

CS 490: NATURAL LANGUAGE PROCESSING

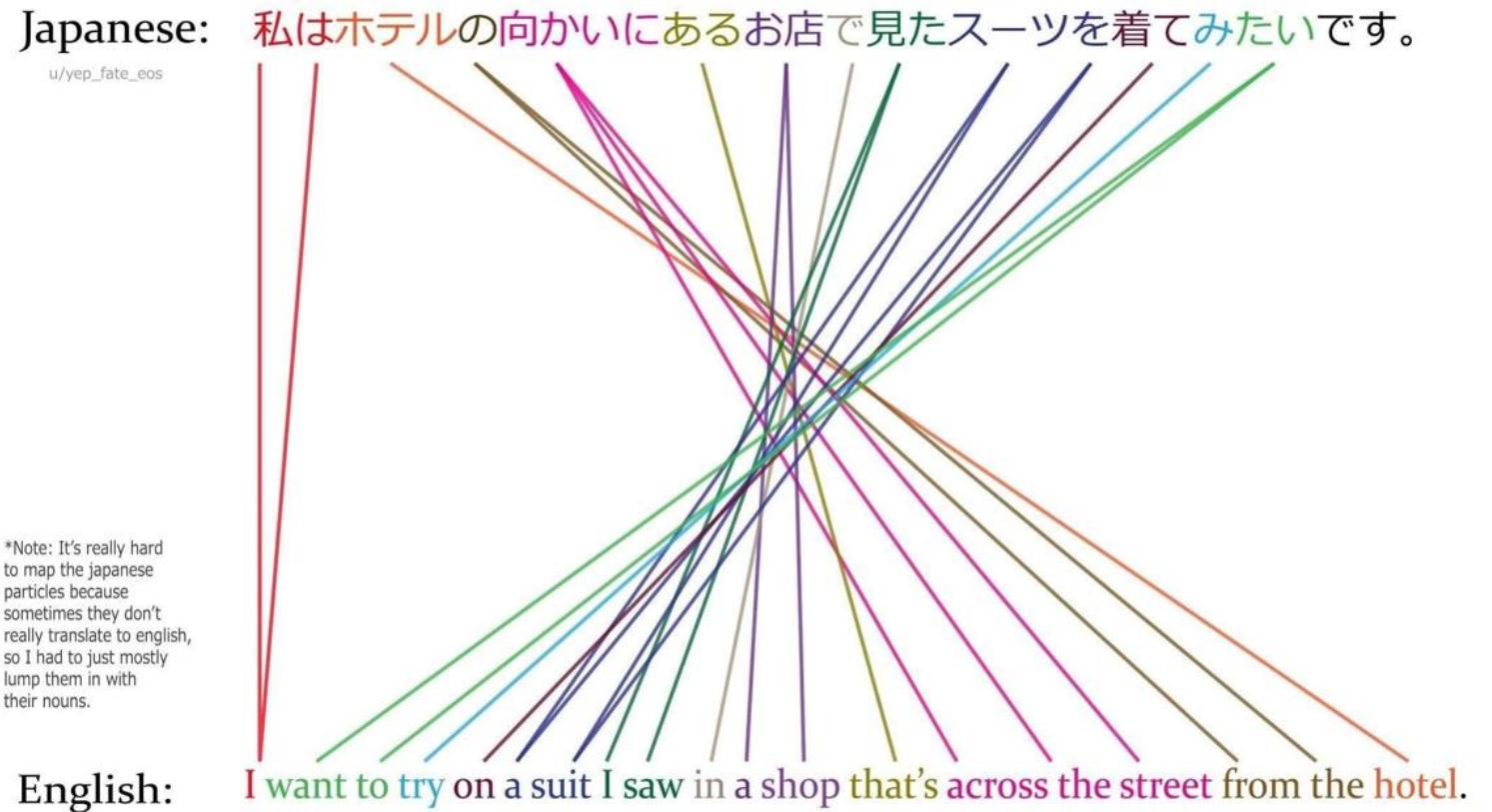
Dan Goldwasser, Abulhair Saparov

Spring 2026

WHAT IS NLP?

- Build algorithms that work with natural language.
- How do these algorithms work?
- Why do they sometimes work well?
- Why do they sometimes not work?
- This course is meant to teach about the fundamentals of NLP,
 - And about the tools/methods that practitioners use to solve NLP problems.

NLP TASKS


- Machine translation

Input: The quick brown fox jumped over the lazy dog.

Output: 素早い茶色のキツネは怠け者の犬を飛び越えました。

NLP TASKS

- Machine translation

[source: Reddit u/yep_fate_eos]

NLP TASKS

- Machine translation
- Named entity recognition

Input: Honda

Output: company

NLP TASKS

- Machine translation
- Named entity recognition

Input: Noam Chomsky

Output: person

NLP TASKS

- Machine translation
- Named entity recognition

Input: Apple

Output: company

NLP TASKS

- Machine translation
- Named entity recognition

Input: apple

Output: not named entity

NLP TASKS

- Machine translation
- Named entity recognition
- **Coreference resolution**

Input: The souvenir didn't fit into the suitcase because it was too big.

Output: “it” = “souvenir”

NLP TASKS

- Machine translation
- Named entity recognition
- **Coreference resolution**

Input: The souvenir didn't fit into the suitcase because it was too small.

Output: “it” = “suitcase”

NLP TASKS

- Machine translation
- Named entity recognition
- Coreference resolution
- **Question answering**

Input: You are in the middle of a circular lake. You can swim at 1 m/s. A dog is at the edge of the lake. The dog can run on land at x m/s, but cannot swim, and you can run faster. What is the highest value for x such that you can still escape?

Output: 4.6033

Reasoning is needed to solve this task.

NLP TASKS

- Machine translation
- Named entity recognition
- Coreference resolution
- Question answering
- Image description

Input:

Output: This image features a framed painting of Purdue University. The artwork is displayed on a white marble wall...

Multi-modal NLP includes the study of tasks involving other modalities, such as vision, sound, speech, motion, etc.

NLP AS MACHINE LEARNING

- It is infeasible to write a function to solve these tasks directly.
- So we rely on machine learning to **learn** this function from data.
 - We use a **dataset** containing many input-output examples.
 - We train a machine learning model predict the output from the input.
- The specific choice of model and training regimen is the “**method**.”

LANGUAGE IS AMBIGUOUS

“Teachers strike idle kids.”

- Interpretation 1: Teachers physically strike kids who are idle.
- Interpretation 2: The teacher’s strike is causing the kids to be idle.

LANGUAGE IS AMBIGUOUS

“Time flies like an arrow.”

- Interpretation 1: Time moves forward similar to how an arrow flies.
- Interpretation 2: This is a command, telling you to measure the speed of the flies similar to how you would measure the speed of an arrow.
- Interpretation 3: Also a command, telling you to measure the speed of the flies, but in a manner similar to how arrows would measure the speed of the flies.
- Interpretation 4: There are things called “time flies” and they like an arrow.
- We will cover probabilistic methods that handle ambiguity.

NLP \neq LANGUAGE MODELS

- Language modeling is a **task** in NLP.

Input: The quick brown fox jumped over the lazy

Output: dog

- These days, “language models” almost exclusively refers to **large-scale machine learning models** that are trained on the language modeling task.

NLP \neq LANGUAGE MODELS

- It seems as though **large language models** (LLMs) have “taken over” NLP.
 - And we will discuss how they work.
- Language modeling task has a nice property:
 - Many (all?) other NLP tasks can be written as a language modeling task.
 - So if you train a good language model, you train it to perform many NLP tasks simultaneously.
 - Valid question: Can LLMs “solve” all NLP tasks?
- But this property is not unique to language modeling.
 - E.g., many NLP tasks can also be phrased as question-answering.

NLP ≠ LANGUAGE MODELS

The image is a screenshot of a news article from CIO. The header features the word 'CIO' in large red letters. To the right of the header is a red square button with a white equals sign (=) on it. Below the header, the navigation bar includes 'Home' and 'Artificial Intelligence'. The main headline is 'With o3 having reached AGI, OpenAI turns its sights toward superintelligence'. Below the headline is the author's name, 'by Taryn Plumb'. The central text of the article is a large, bold, black block quote: 'With o3 having reached AGI, OpenAI turns its sights toward superintelligence'.


Home • Artificial Intelligence •

With o3 having reached AGI, OpenAI turns its sights toward superintelligence

by Taryn Plumb

With o3 having reached AGI,
OpenAI turns its sights
toward superintelligence

NLP \neq LANGUAGE MODELS

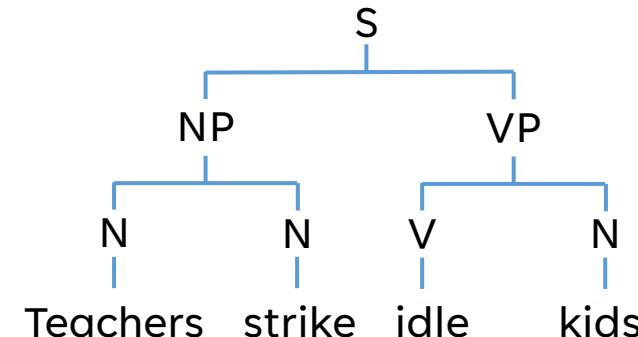
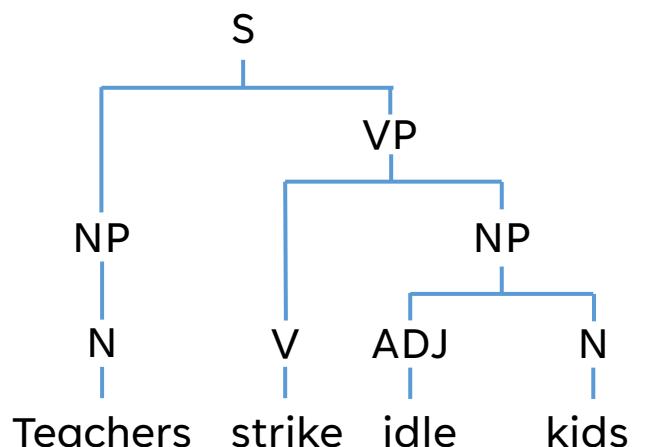
- LLMs are making evaluation very difficult.
- We will discuss how NLP models are evaluated.
 - And how their evaluation differs from before LLMs.

NLP \neq DEEP LEARNING

- Modern approaches in NLP rely heavily on deep learning methods.
- But NLP is “method-agnostic”:
 - Many different kinds of methods can be used to solve various problems in NLP.
- NLP is not only the study of the methods for solving natural language tasks.
- NLP includes the modeling of natural language itself:
 - What is language?
 - How can we describe it?
- Studying the nature of language itself will help us build better models and implement better methods to solve NLP tasks.

LANGUAGE HAS STRUCTURE

- Language is more than just a sequence of words.
- There is recursive structure:
 - “Fae sees Alex.”
 - “Fae sees the person sitting under the tree.”
 - “Fae sees the person sitting under the tree that had been planted 10 years ago.”
 - etc...
- There is structure *within* words too:
 - “Recalculating” -> “re”- “calculate”- “ing”
 - “Sleeplessness” -> “sleep”- “less”- “ness”
 - Other languages have much more complex morphologies.



LANGUAGE HAS STRUCTURE

- Most NLP tasks require understanding the structure of language.
- How can we evaluate how well an NLP method performs on a task (or build better methods) if we don't understand the structure underlying the task?
 - E.g., I can train a model to land a rocket on the moon by having it try **many attempts**.
 - The model will try different rocket shapes, fuels, maneuvers, etc.
 - But if I understand **Newtonian gravity**, I can build a better model/rocket.
- Understanding linguistic theory is similarly important.
- We will cover **foundational** concepts of linguistic theory, such as morphology, syntax, semantics, pragmatics, etc.

LANGUAGE HAS STRUCTURE

“Teachers strike idle kids.”

- Interpretation 1: Teachers physically strike kids who are idle.
- Interpretation 2: The teacher’s strike is causing the kids to be idle.

COURSE OUTLINE

The course is divided into **three modules**.

- **Module 1: NLP fundamentals**
- Tasks: Text classification
 - E.g., spam detection, author identification, document classification
- Methods: Perceptron, logistic regression, neural networks
 - How to train NLP models
 - Optimization, gradient descent, regularization
- Representation learning, word embeddings
- Attention and transformers

COURSE OUTLINE

- **Module 2: NLP foundations**
- Morphology and lexical semantics
 - Lexical relations, tokenization, byte-pair encoding
- Syntax
 - Context-free grammars (CFGs), dependency grammars, parsing
- Semantics
 - Compositional semantics, lexical semantics
 - Reasoning, natural language understanding, machine comprehension
- Discourse and pragmatics
 - Conversational NLP

MORPHOLOGY

- Morphology is the study of how words are constructed from smaller components.
 - E.g., verb conjugation: “I walk,” “she walks,” “We walked yesterday,” ...
 - “I sit,” “she sits,” “We sat,” ...
 - “I am,” “she is,” “We were,” ...
- Simply adding/deleting endings is **not sufficient**:
 - “gorge” vs “gorgeous”
 - “good” vs “goods”
 - “arm” vs “army”

SYNTAX

- Syntax describes the structural relationship between words in a sentence.

“Sally caught the butterfly **with a net**.”

vs

“Sally caught the butterfly **with a spot**.”

- However, syntax is not enough to capture the **meaning** of the sentence.

SEMANTICS

- Semantics describes the meaning of words, phrases, and sentences.
- Compositional semantics describes how the meaning of smaller phrases combines to form the meaning of larger phrases:
 - “Sally caught the butterfly” + “with a net”
- Meaning can be represented in a formal language, such as logic, programming languages, or math.
 - “Mary gave 10 apples to Bob.”
can be semantically-parsed into:
`bob['apple'] += 10`
`mary['apple'] == 10`

COURSE OUTLINE

- **Module 3: Large language models**
 - Classical language models, transformer language models
 - Scaling laws
 - Prompting
 - Few-shot prompting, in-context learning, chain-of-thought prompting
 - Retrieval-augmented generation, LLM agents
 - Fine-tuning, model compression
 - Reinforcement learning
 - RLHF, RLVR
 - Multi-modal NLP

COURSE LOGISTICS

COURSE EXPECTATIONS

- Evaluation:
 - Four assignments (30%)
 - First assignment will check whether you have sufficient technical background
 - Final project (30%)
 - Final exam (40%)

GUIDELINES

- Working in groups
 - We encourage you to work in groups on the assignments and final project.
 - Groups should have 2-4 people.
 - You are free to collaborate.
 - But to state the obvious: **No cheating or plagiarism**
 - You can discuss homeworks with others but must write up your own solution.
- Late policy: 5 late days total
 - We strongly recommend you start assignments early.
- Attend office hours to seek guidance, and to discuss homeworks and projects.

USE OF GENERATIVE AI

- If you find generative AI useful (e.g., ChatGPT), you are **permitted** to use it.
- However, do not simply copy the output of AI into your assignments.
- You should write your own solutions.
- When coding, you may use AI to generate snippets of code (e.g., boilerplate).
 - But be wary of over-relying on/putting too much trust in the AI.
 - We will design assignments that are not as easily solved by current AI models.
- **AI will not help you on the final exam.**
 - Relying too much on AI for assignments will hinder your preparation for the exam.

ONLINE DISCUSSION

- We will be using Ed Discussion as the online platform for discussion.
- Join the discussion forum using the following link:

<https://edstem.org/us/join/SnZKcE>

- If you have any questions, please make a post there!
- I will announce this link on Brightspace.
- **If you are not registered on Brightspace, send me an email and I will add you.**

FINAL PROJECT

- **Find a topic you care about!**
 - Something you always wanted to build.
 - E.g., applications of NLP to other domains.
- **Key points:**
 - Identify a language-related problem and define it precisely.
 - Interesting approach in tackling the problem
 - We will cover several different kinds of methods
 - You will have to choose the methods and justify your choice
 - **What not to do:** avoid generic problems and generic solutions
 - Apply LLM with chain-of-thought is not novel or interesting

FINAL PROJECT

- **Proposal:**
 - Define the problem you aim to solve/answer
 - Basic intuitions and proposed method
 - Describe datasets (if applicable)
 - **No more than 5 pages!**
- **Final report:** due at end of class
 - Short report describing your findings
 - Presentations? (depending on class size and time availability)

FINAL PROJECT IDEAS

- Question-answering
 - Maybe in a new domain, where domain-specific information can be exploited.
- Multi-modal NLP
 - Combine NLP and vision or robotics
- Analysis or rigorous evaluation of NLP models
 - Including LLMs
- Conversational agent to solve a problem in a specific domain (e.g., medicine, law, finance)
- Metaphor, poetry, humor, non-literal language
- Your own application

QUESTIONS?