Natural Language Processing

Lecture 2: text classification
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*more like 10000000000

The 10000 feet view”

* NLP is about models that can process human languages.
* That’s a pretty open definition.. We need a better definition!

Is the word “time” a verb or a noun?

“Time flies like an arrow.”

Interpretation 1: 7ime moves forward similar to how an arrow flies.
Interpretation 2: Thisisa command, telling you to measure the speed of the
flies similar to how you would measure the speed of an arrow.

...(several other options)

Which one of these two options?



Text Classification

e Classification is a fundamental and well-understood machine
learning tool.

* |t also provides a useful abstraction for many NLP tasks!

* Typically relying on a supervised learning pipeline:
* Collect a large dataset of relevant texts, annotate with relevant labels.
* Build a classifier using one of many possible learning algorithms.
* Hopefully, it generalizes to new data.

* |n the next two lecture we’ll talk about this pipeline (evaluation,
learning algorithms, etc.).

BUT also....



Text Classification

* Text classification is more than “dumping data on an algorithm”

* It’s a way to model different aspects of text interpretation.

* |.e., how do you formulate the classification task?
* How do you decide what are the relevant labels?

* It’s a way to introduce relevant linguistic knowledge.
* What are the relevant features?
* What kind of assumptions are you making by picking different choices?



Sentiment Classification

| just bought company-A

* Sentiment Analysis newest laptop. The display is

* Interpretation of product reviews: awesome, the speakers are not
positive/negative/neutral that great. I'm happy with the
» Prediction is done overall entire text performance, but | think they

charge too much for it!

* Aspect based sentiment

* |dentify the product aspects users care
about

* identify and associate sentiment with
these aspects based on text

Display: Positive
Speakers: Negative
Performance: Positive
Price: Negative



Sentiment Classification

* How should we define it as a classification task?
e What could be useful features here?
* What assumptions are you making?

| just bought company-A
newest laptop. The display is
awesome, the speakers are not
that great. I'm happy with the
performance, but | think they
charge too much for it!



Sentiment Classification, take-2

Dude, | just watched this horror
flick! Selling points: nightmares
scenes, torture scenes, terrible
monsters that was so bad a##!

Don't buy the popcorn it was
terrible, the monsters selling it
must have wanted to torture me,
It was so bad it gave me
nightmares!




Deceptive Reviews

Which of these two hotel reviews is deceptive

opinion spam? My husband and I stayed at the James Chicago Hotel for
our anniversary. This place is fantastic! We knew as soon
as we arrived we made the right choice! The rooms are
BEAUTIFUL and the staff very attentive and wonderful!!
The area of the hotel is great, since I love to shop I
couldn't ask for more!! We will definatly be back to
Chicago and we will for sure be back to the James Chicago.

I have stayed at many hotels traveling for both business
and pleasure and I can honestly stay that The James is
tops. The service at the hotel Is first class. The rooms are
modern and very comfortable. The location is perfect
within walking distance to all of the great sights and
restaurants. Highly recommend to both business travellers
and couples.

What should your learning algorithm look at?

Finding Deceptive Opinion Spam by Any Stretch of the Imagination. Ott etal. ACL 2011



Power Relations

Can subtle, domain-independent linguistic cues
reveal (situational) power?

Intuition: each
domain (i.e., situation)
defines relevant
eXpression of power
How can we |
generalize?

Who's in charge?

Blah
Unacce
ptable

blah
N

/Your honor, |

agree blah
blah blah

.

What should your learning algorithm look at?

Echoes of Power: Language Effects and Power Differences in Social Interaction. Danescu-Niculescu-Mizil et-al

. WWW 2012.



Power Relations

Communicative behaviors are “patterned and
Coordinated, like a dance” [Niederhoffer and Pennebaker 2002]

@h ja ad tO the adajkj the

adah ja ad at the adajk] lhe)
( adah ja ad Of adajkj the
adah ja ad by adajkj the )
Cadah tO ja ad an adajk] gh
adah ja ad the adajkj forhgh )

Echoes of Power: Language Effects and Power Differences in Social Interaction.
Danescu-Niculescu-Mizil et-al . WWW 2012.




- Many complex NLP
| | ] ta
Text Classification bebroken down into severg| Sk can
Interconnected classificati
Ication t
Forexample - autor asks.

€gressive language
models, predict the next word! ¢

* Assighing text to categories
 Spam/phishing detection
* Sentiment/stance analysis
* Topic classification
* Authorship
* Author profile: gender, age, education,...

* Many, many more examples!

Build an intuition — which problems are easy and which ones hard?

What makes a text classification task hard?



Basic Definitions

* Given: D a set of labeled examples {<x,y>}

* Goal: Learn a function f(x) s.t. f(x) =y
* Note: y can be binary, or categorical (multi-class)
* The input xis represented as a vector of features

* Break D into three parts:
* Training set (used by the learning algorithm)
* Test set (evaluate the learned model)
* Development set (tuning the learning algorithm)

* Evaluation:
* performance measured over the test set
* Accuracy: proportion of correct predictions (test data)



Precision and Recall

* Given a dataset, we train a classifier that gets 99% accuracy
* Did we do a good job?

* Build a classifier for brain tumor:
* 99.9% of brain scans do not show signs of tumor
* Did we do a good job?
* By simply saying “NQO” to all examples we reduce the error by a
factor of 10!
* Clearly Accuracy is not the best way to evaluate the learning system
when the data is heavily skewed!

* Intuition: we need a measure that captures the class we care
about! (rare)
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Precision and Recall

e The learner can make two kinds of mistakes:
 False Positive
* False Negative

True Label: 1 True Label: O

Predicted: 1 True Positive False Positive

Predicted: O False True Negative
Negative

 Precision:

* “when we predicted the rare class, how often are we right?”

True Pos True Pos

e Recall Predicted Pos - True Pos + False Pos

* “Out of all the instances of the rare class, how many did we catch?”
True Pos True Pos

Actual Pos  True Pos + False Neg

14



F Score

* Precision and Recall give us two reference points to compare learning

performance

Precision Recall
Algorithm 1 0.5 0.4
Algorithm 2 0.7 0.1
Algorithm 3 0.02 1

* Which algorithm is better?

* Option 1: Average
* Option 2: F-Score

P+ R

2

2PR

P+ R

We need a single score

Properties of f-score:

Ranges between 0-1
Prefers precision and recall
with similar values

15



Linear Classification Models

* Linear relationship between input and output

Vector generated by a feature function

&

y = arg max OTf(x,y)

y ﬂ
Feature weights
Predicted Class



Bag of Words Feature Representation
* BoW: Simplest (yet surprisingly effective) choice

I Tvou |Ho |Liked |uked | Apples [Pen|. 1z |1
1 0 0 0 1 1 0 1

0

0 0 1 0 0 0 0
0 0 1 0 0 0 0

- O O

0

* Issues: dropping function words, long tail, stemming
 Should liked and Liked be separate features?

* Features are associated with weights.

» Final decision: y = arg max HTf(X, y)
¥



Simple Example: Naive Bayes

* Naive Bayes: simple probabilistic classifier
* Given a set of labeled data:

* Documents D, each associated with a label v
 Simple feature representation: BoW

* Learning:
* Construct a probability distribution P(v|d)

* Prediction:
* Assign the label with the highest probability

* Relies on strong simplifying assumptions



Naive Bayes: Independence
Assumptions

* Basic idea: (sentiment analysis)

* “l loved this movie, it’s awesome! | couldn’t stop laughing for two
hours!”

* Mapping input to label can be done by representing the
frequencies of individual words

* Document = word counts
* Simple, yet surprisingly powerful representation!
* Used in Naive Bayes as independence assumptions



Bayes Rule

* Naive Bayes is a simple probabilistic classification method, based
on Bayes rule.

P(v)

PvId)=P@[V) )pa)



Naive Bayes

* The learner considers a set of candidate labels, and picks the
most probable given the observed data.

* Such maximally probable assignment is called maximum a
posteriori assignment (MAP); Bayes theorem is used to compute
It

Vyiap = argmax, .y P(vID) = argmax, ., P(DIv) P(v)/P(D)

= argmax, .y P(DIv) P(v)

Since P(D) is the same for allv .V



Naive Bayes

* How can we compute P(v |D)?
* Basic idea: represent document as a set of features, such as BoW features

Vaap =argmax , P(v; | x)=argmax , P(v;|X;,X,,...,X,)

~ P(X;5Xy5000s X, | V)P(V;)
VMAP o argmaXVjDV
P(X,5X,4000sX )

=argmax, ., P(X;,X,,...,X, | V;)P(v;)



Parameter Estimation
Vuap = argmax, P(xy, Xy, ..., X, | v) P(v)

* Given training data we can estimate the two terms

* Estimating P(v) is easy. For each value v count how manytimes it appearsin
the training data.

Question: Assume binary x;’s. How many parameters does the model require?

* However, itis not feasible to estimate P(X4,..., X, | V)

* Inthis case we have to estimate, for each target value, the probability of
each instance (most of which will not occur)

* I[n order to use a Bayesian classifier in practice, we need to make assumptions
that will allow us to estimate these quantities.
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Detour: the chain rule

The joint probability P(x4,..,X,,) can be rewritten as a product:

P(Xpn,.o., X)) =P(X0| X1y, X1) P(Xpv,..., X1)
Repeating this process n times for each variable results in:
) 7l k—1
P ([’] Xk) =1]P (Xk M Xj)
k=1 k=1 j=1

For example:
P[Xfl1-X31 Xzﬁxl} -

P(Xy | X3, X5, X1) - P(X3, X0, X4)
P(Xy | X3, X2, X7) - P(X3 | X5, X7) - P(X3, X7)
P(Xy | X3, X5, X1) - P(X3 | X2, X7) - P(X2 | X1) - P(X,)

https://en.wikipedia.org/wiki/Chain_rule_(probability)



NB: Independence Assumptions

Conditional Independence:
Assume feature probabilities are independent given the label

P(Xi | Y) = P(Xi | Xk; Y) (forall feature pairs, i,k)

P(Y|X) x P(X[Y)P(Y)  “3

x H P(X;|Y)P(Y)

Question: How many
parameters do we need to
estimate now?

Naive
assumption
\_ J




Simple example

P(Y) P(Xll X2, X3 | Y) - P(Xll X2 7 X3, Y)

using the chain rule
P(x1,x2,x3,y)=P(x11x2,x3,y)P(x2,x3,y)
=P(x11x2, x3,y) P(x21x3, y) P(x3, y)

=P(x11x2,x3,y) P(x21x3,y) P(x3 ly) P(y)
assuming conditional independence

=P(x;1y) P(x,1y) P(x5 ly) P(y) € we end up with Naive Bayes

26



Naive Baye: independence
assumptions

* Bag of words representation:
* Word position can be ignored

* Conditional Independence: Assume feature probabilities are
iIndependent given the label What s ¢,
e P(x;|V;) = P(X;[X;.43 Vi) “Xandy 5

* Both assumptions are not true
* Help simplify the model how
 Simple models work well Many featyre
S are needeqy now?




Independence Assumptions

Conditional Independence: P(x; | V]-) = P(x;1x;_¢; V]-)

Dude, | just watched this horror
flick! Selling points: nightmares
scenes, torture scenes, terrible
monsters that was so bad a##!

P(“terrible” |pos) =? P(“terrible” | “food”, pos)

P(“terrible” |pos) =? P(“terrible”| “monsters”, pos)



Naive Bayes
Vuap = argmax, P(x, Xy, ..., X, | v )P(V)

P(X;5Xy5ee0n X, | V) =
=P(X; [ Xp5000s X5 VIP(X 50005 X | V)
=P (X | Xy5000 X5 VIP(X, [ X35000s X5 V)P(X5 5000, X | V)

= P(X; [ Xy5000s X5 VIP(X, | X35000s X5 V) P(X5 | Xg5eees X5 Vi) P(X | V)

Assumption: feature values are independent given the target value

— i:1P(Xi | Vj)

29



Estimating Probabilities

Assume a document classification problem, using word features

How do we estimate P(word , |v) ?

# (word , appears in training in vdocuments) n,

P(word , | v) =
( 1Y) # (v documents) n

Data sparsity is a problem
-- If mis small, the estimate is not accurate
- if Mkis 0, it will dominate the estimate: we will never predictv
If a word that never appeared in training (withv )
appears in the test data



Zero counts are a problem

* If an attribute value does not occur in training example, we assign
zero probability to that value: P(x; Iy) =0

* How does that affect the conditional probability P(y | x) ?
(assuming that x; appears in x)

* [tequals 0
* Why is this a problem?
* Adjust for zero counts by “smoothing” probability estimates



Robust Estimation of Probabilities

* There are many ways to do it, some better justified;

e An empirical issue.

n +mp
P(x, |v) = :1+m

* Here:
*n, is #(of occurrences of the word in the presence of v)
* n /s #(of occurrences of the label v)
® pis apriorestimate of v (e.g., uniform)
* mis equivalent sample size (# of labels) _

* Laplace Rule: for the Boolean case, p=1/2, m=2 P& |V) =———

32



Smoothing: Laplace correction

X
Laplace correction
Low | Medium | High
s T +
' N+ad
Yes 10 13 17 (i=1,...,d),
Simple version:
Numerator: add 1
No 2 13 0 Denominator: add k, where k=number
of possible values of X
: _ _ 0 +1
PLX, =HighlY=Nol= 3 )33

Adds uniform prior



Numerical Stability

T
* Recall: NB classifier: H P(X;|Y)P(Y)
1=1
* Multiplying probabilities can get us into problems!
* Imagine computing the probability of 2000 independent coin
flips
* Most programming environments: (.5)%°9°=0



Numerical Stability

* Our problem: Underflow Prevention

* Recall: log(xy) =log(x) + log(y)

* better to sum logs of probabilities rather than multiplying
probabilities.

* Class with highest final un-normalized log probability score is still
the most probable.

c,, = argmax log P(c,)+ log P(x,|c,)
NB J ! J

c;eC i€ positions



Naive Bayes

 Easy to implement

* Converges very quickly
* Learningis just counting

* Performs wellin practice
* Applied to many document classification tasks
* |f data set is small, NB can perform better than sophisticated algorithms

* Strong independence assumptions
* [f assumptions hold: NB is the optimal classifier
* Even if not, can perform well



Nalve Bayes: two classes case

* Assume d-dimensional binary input vector, classifying between
two classes.

e We can rewrite the decision rule as follows:

P(x|ly=1)P(y =1)
P(x|y =0)P(y =0) =

* And using the Naive Bayes assumptions:

Ply=1) y7 P(z;ly=1)
—0) Ll 56 =0 >

1=0

37



Naive Bayes: two classes case

Ply=1) vy P(z;ly=1
Last step: \y 'H (2;ly ']‘“*1

* Let’s simplify notation: Py=0) L ply=0)

— Rename P(y=1) as P

—Rename P(z; = 1|y = 1) as a;

—Rename P(z; = 1|y = 0) as b,
* As aresult, we can define:

Plasly=0) = 67 (1 - )05 Plaly=1) = (1 -0

d
And express the decision rule: —— - || - — > 1

38



Naive Bayes: two classes case

* Now, collect the constants:

L

39



Naive Bayes: two classes case

d d

p 1—(Ij {I,j l—bj

log | —— log [ -2 - > ()
o 1—Pgl_b' +3-Z_:% Og(bj l—a;/) —

. — ~"

Note that the value of this term is This term depends on x; let's
not dependent on x, itis a constant  rganame it as w. ’
value! Let's denote it as b J

d “Aha.’
Making this e S _MOment”: NB
substitution we can a b+ Z LiWs = 0 IS a linegr

familiar term: 7=0 Classifier!

40



NB Expressivity Revisited

* Theindependence assumptions made by NB capture the
connection between each feature and the output.

— Unlike DT where each path defines this connection over a
combination of features.

* |f we define the NB over the log P(Y) P(X|Y) we get
Cyp = argmax log P(c;)+ Zlog P(x;|c;)

c;eC i€ positions

Which looks like a Linear model : Ax+b
Let’s take a closer look!



Linear Classifiers

* Linear threshold functions
* Associate a weight (w;) with each feature (x))
* Prediction: sign(b + w'x) =sign (b + X w; X;)
*b +w!x >0 predict y=1
* Otherwise, predict y=-1

* NB is a linear threshold function
* Weight vector is assighed by computing conditional probabilities

* In fact, linear threshold functions are a very popular
representation!



Linear Classifiers
sign(b + wix) =sign (b + X w; X;)

Each point in this space is an
instance (x), the label color

+ +_|_ coded (black,red)
The coordinates (e.g., x1,x2), are ++
determined by feature activations + + +.|.
_ T4
- +




Expressivity

* How expressive are linear functions, i.e., is there a linear function that is
consistent with the data

 Afamous non-linearly separable example (XOR):

_: - - +.-||::||_'+
o _|__-|I:
] Is this a“y
+:||'__"|:+ e breake,
+I g



Expressivity

By transforming the feature space
these functions can be made linear

—0-0-0-0-HHiHIHE-0-0-00—

Represent each point in 2D as (x,x?)




Expressivity

More realistic scenario: the data
sign(b + w'x) is almost linearly separable,
except for some noise.




Features

* Low expressivity models depends on having a relevant feature
representation.

* Relevant: can characterize the target function without blowing up the
space

* We can design complex features

P (x) =

1 x, is capitalized {1 x contains "good" more than twice

¢, (x) :{

0 otherwise 0 otherwise



Feature choices

* So far we have discussed BoW representation
* Infact, you can use a very rich representation

* Example: identifying names
using capitalization patterns

* Question: what are good features for..
* Deception detection?
* /dentifying status on social media?
* Predicting "virality”?
* |dentifying emergency situations?

 Can/should we go beyond word representations?

1 x, is capitalized

¢1(x):{

0 otherwise



Perceptron

* One of the earliest learning algorithms
* Introduced by Rosenblatt 1958 to model neural learning

* Goal: directly search for a separating hyperplane

* |[f one exists, perceptron will find it
* |If not, ...

* Online algorithm
* Considers one example at a time (NB - looks at entire data)

* Error driven algorithm
* Updates the weights only when a mistake is made



Perceptron

 We learn f:X> {-1,+1}representedas £ =sign{wex)
* Where X= {0,1}"
* Given Labeled examples: {(X1, Y1), (X5, Vo) s---(Xrys Yim)}

1. Initializew=0 'R"
2. Cycle through all examples, until no more errors are made
a. Predict the label of instance xto be y’ = sgn{wex)
b. If y’#v, update the weight vector:
W=W+ryx (r-aconstant, learning rate)

Otherwise, if y’=y, leave weights unchanged.




Note about threshold

* On previous slide, Perceptron has no threshold
* But we don’t lose generality:

x<:><x,l> VX 0




Perceptron Convergence

* The Perceptron algorithm defines a search procedure over the
space of linear functions.
* When do we move from one search-state to another?

* The stopping criteria of the perceptron algorithm is “no more
mistakes over the training data”

* What kind of convergence guarantees can we get?

* We analyze Perceptron in terms of the number of mistakes the algorithm
will make until convergence.
* Note that it is different from number of iterations of the data!

* This analysis will rely on the notion of margin



Margin
* The margin of a hyperplane for a dataset is the distance
between the hyperplane and the data point nearest to it.

Distance: |WX+tDbl To help the (Wx;+b) v,
|w| discussion,
let’s consider the R
signed distance:
(why?)
- . ++ 5y
15 + ++

— - “\ . - .
> Margin with respect to this hyperplane




Margin

* The margin of a hyperplane for a dataset is the distance between
the hyperplane and the data point nearest to it.

* The margin of a data set (y) is the maximum margin possible for
that dataset using any weight vector.
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Mistake Bound for Perceptron
» Let D={(x;, y;)} be a labeled dataset that is separable

* Let ||x||< R for all examples.

 Let y be the margin of the dataset D.

* Then, the perceptron algorithm will make at most R?/y
2 mistakes on the data.



Perceptron: Realistic Version

« Welearn £:X2> {-1,+1} representedas £ =sgn{we*x)
* WhereX={0,1}"

« Given Labeled examples: { (x;,¥1), (X,,¥2) , .. (X.,¥)}

My I

1. Initialize w=0 |

2. Forlter=0,...,T

3. lterate over all the examples
a. Predict the label of instance x to be
b. If update the weight vector:
W=W+ryx (r-a constant, learning rate)

Otherwise, if leave weights unchanged.



Practical Example

Task: context sensitive spelling

‘I didn’t know {weather,whether} to laugh or cry”

Test Accuracy
L] L] [ ]
[sx] Lo =
i 2 (8]

L]
[ss]
]

—&—Memory-Based

——Winnow
—A—Perceptron

©a
.

=]
wn

—m—Naive Bayes

[ ]
-]
L]

0.1 1 10 100 1000
Milliocns of Words

Source: Scaling to very very large corpora for natural language disambiguation Michele Banko, Eric Brill. MSR, 2001.



Case Study 1: Deception Detection

TRUTHFUL DECEPTIVE

Approach Features Accuracy P R F P R F
GENRE IDENTIFICATION POSsvm 73.0% 1S | 083 | 117 | ThLL | 71y | 14.2
A —— LIWCsvy 76.8% | 772 | 76.0 | 76.6 | 76.4 | 71.5 | 769

DECEPTION DETECTION

UNIGRAMSsym : : : : , : ;
BIGRAMS vy 89.6% 90.1 | 89.0 | 89.6 | 89.1 | 90.3 | 89.7
LIWC+BIGRAMSgyy, 89.8% 89.8 | 89.8 | 89.8 | 89.8 | 89.8 | 89.8
TEXT CATEGORIZATION TRIGRAMS gy, 89.0% 89.0 | 89.0 | 89.0 | 89.0 | 89.0 | 89.0
UNIGRAMSys 88.4% 92.5 | 83.5 | 87.8 | 85.0 | 93.3 | 88.9
BIGRAMS 5 88.9% 89.8 | 87.8 | 88.7 | 88.0 | 90.0 | 89.0
TRIGRAMS 5 87.6% 87.7 | 87.5 | 87.6 | 87.5 | 87.8 | 87.6

— | JUDGEI | 61.9% | 579 | 875 | 69.7 | 744 | 36.3 | 48.7 |

HUMAN / META JUDGE 2 56.9% 539 | 95.0 | 68.8 | 789 | 18.8 | 30.3
SKEPTIC 60.6% 60.8 | 60.0 | 60.4 | 60.5 | 61.3 | 60.9




Case Study 2: Detecting Social Meaning

* Credits:
Slides based on D. Jurafsky slides.

Describes work done in papers:

Dan Jurafsky, Rajesh Ranganath, and Dan McFarland. 2009.
Extracting Social Meaning: Identifying Interactional Style in
Spoken Conversation. Proceedings of NAACL HLT 2009.

Rajesh Ranganath, Dan Jurafsky, and Dan McFarland. 2009. It's
Not You, it's Me: Detecting Flirting and its Misperception in
Speed-Dates. EMNLP-2009



Detecting social meaning:

Given speech and text from a conversation

Can we detect styles’, like whether a speaker is
— Awkward?

— Flirtatious?

— Friendly?

Can we tell if the speakers like each other?

Dataset:

— 991 4-minute “speed-dates”

— Each participant rated their partner and themselves for these styles






What do you do for fun? Dance?

Uh, dance, uh, | like to go, like camping. Uh, snowboarding, but I'm not
good, but | like to go anyway.

You like boarding.

Yeah. | like to do anything. Like I, I'm up for anything.

Really?

Yeah.

Are you open-minded about most everything?

Not everything, but a lot of stuff-

What is not everything [laugh]

| don't know. Think of something, and I'll say if | do it or not. [laugh]

Okay. [unintelligible].

Skydiving. | wouldn't do skydiving | don't think.

Yeah I'm afraid of heights.

F: Yeah, yeah, me too.

M: [laugh] Are you afraid of heights?

F: [laugh] Yeah [laugh]




The Speed Date corpus

991 4-minute dates
— 3 events, each with ~20x20=400 dates, some data loss

— Participants: graduate student volunteers in 2005
 participated in return for the chance to date

Speech

— ~60 hours, from shoulder sash recorders; high noise
Transcripts

— ~800K words, hand-transcribed, w/turn boundary times
Surveys

— (Pre-test surveys, event scorecards, post-test surveys)
— Date perceptions and follow-up interest

— General attitudes, preferences, demographics
Largest experiment with audio, text, + survey info



What we attempted to predict

e Conversational style:
— How often did you behave in the following ways on this date?
— How often did they behave in the following ways on this date?

* On ascale of 1-10 (1=never, 10=constantly)
flirtatious

friendly

awkward

A

assertive



Features

* Prosodic
— pitch (min, mean, max, std)
— intensity (min, max, mean, std)
— duration of turn
— rate of speech (words per second)

* Dialog
— questions
— backchannels (“uh-huh”, “yeah”)
— appreciations (“Wow!”, “That’s great!”)
* Lexical
— negative emotion (bad, weird, crazy, hate) words
— storytelling words (past tense) + food words (eat, dinner)
— love and sexual/emotional words (love, passionate, screw)
— personal pronouns (/, you, we, us)




Features extracted within turns
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Features: Pitch

* FO min, max, mean

— Thus to compute, e.g., FO min for a conversation side
e Take FO min of each turn (not counting zero values)
* Average over all turnsin the side

* “FO min, FO max, FO mean”

— We also compute measures of variation

e Standard deviation, pitch range
* FO min sd, FO max sd, FO mean sd
 pitch range = (fO max — fO min)



Features: other prosodic

Intensity min, max, mean, std

— computed as for pitch
Duration of turn
Total time for conversation side

Rate of speech (words per second)



Dialog act features

Questions # of questions in side
Laughter # of instances of laughter in side
Turns  total # of turns in a side

Backchannels # of backchannels in side
— Uh-huh. Yeah. Right. Oh, okay.

Appreciations # of appreciationsin side
— Wow. That’s true. Oh, great! Oh, gosh!

Regular expressions drawn from hand-labeled Switchboard
Dialogue Act Corpus (Jurafsky, Biasca, Shriberg 1997)



Appreciations

Wow.

Oh, wow.
That's great.
That's good.
That's right.
Oh, no.

Oh, my goodness.

That's true.

Well, that's good.

Oh, that's great.
Oh, gosh.
Great.

Backchannels

Uh-huh
Yeah
Right

Oh

Yes

Huh

Oh, yeah
Okay
Sure
Really
Oh, really



Clatifications

I've been
goofing off
big time

You’'ve been
what?

I've been
goofing off
big time




Collaborative Completion

* aturn where a speaker completes the utterance begun by the alter
(Lerner, 1991; Lerner, 1996).

And I’'m wearing a
vellow shirt

And black pants

* first word of sentence; is predictable from last two words of
sentence;_; (using atrigram grammar trained on Switchboard)



Dialog feature:
Collaborative Completion

* Heuristic: first word of sentence, is predictable from last
two words of sentence. 4

* Result: Tends to find “locally coherent phrasal answers”
* M: What year did you graduate?
* F: From high school?

* F: What department are you in?
 M: The business school.

— But not:
* F: What department are you in?
e M: I’'m in the teacher education program.



Disfluency Features
« UH/UM: # of filled pauses (uh or um) in side

* M: Um, eventually, yeah, but right now | want to get some more
experience, uh, in research.

e F: Oh.

 M: Uh, so | will probably work for, uh, a research lab for, uh, big
companies.

e RESTART: # of disfluent restarts in side

* Uh, I-there’s a group of us that came in—

* OVERLAP: # of turns in side where speakers overlapped
 M: But-and also obviously—
—F: It sounds bigger.

* M: —people in the CS school are not quite as social in general as
other—



LIWC

* Linguistic Inquiry and Word Count
— Pennebaker, Francis, & Booth, 2001
e dictionary of 2300 words grouped into > 70 classes
— negative emotion (bad, weird, hate, problem, tough)
— sexual (love, loves, lover, passion, passionate, sex,)
— 15t person pronouns (| me mine myself I'd I'll ’'m...)
— 2"d person pronouns (you, you’d you’ll your you’ve...)
— ingest (food, eat, eats, cook, dinner, drink, restaurant...)
— swear (hell, sucks, damn, fuck,...)
o after9/11

— greater negative emotion
— more socially engaged



TOTAL WORDS
PAST TENSE
METADATE
YOU

WE

[

ASSENT
SWEAR
INSIGHT
ANGER
NEGEMOTION
SEXUAL
INGEST

Lexical Features

total number of words

uses of past tense auxiliaries was, were, had

horn, date, bell, survey, speed, form, questionnaire, rushed, study, research

vou, you'd, you'll, your, you're, yours, you've (not counting you know)

lets, let’s, our, ours, ourselves, us, we, we'd, we’ll, we’re, we’ve

I'd I'll, I'm, I've, me, mine, my, myself (not counting I mean)

yveah, okay, cool, yes, awesome, absolutely, agree

hell, sucks, damn, crap, shit, screw, heck, fuck*

think*/thought, feel*/felt, find/found, understand®, figure*, idea*, imagine, wonder
hate/hated, hell, ridiculous™, stupid, kill*, screwed, blame, sucks, mad, bother; shit
bad, weird, hate, crazy, problem®, difficult, tough, awkward, boring, wrong, sad, worry,
love™, passion®, loves, virgin, sex, screw

food, eat™, water, bar/bars, drink*, cook™, dinner, coffee, wine, beer, restaurant, lunch, dish



Architecture: 6 binary classifiers

— Female *Awkward, Male *Awkward,
— Female tFriendly, Male zFriendly,
— Female *Flirtatious, Male =*Flirtatious,

* Multiple classifier experiments
— L1-regularized logistic regression

— SVM w/RBF kernel

— 5-fold cross-validation

e tested on held-out test set of 10% highest and 10%
lowest

e 5folds: 3 train, 1 validation, 1 test



Experiments

K-fold cross validation.
5 folds: 3 train, 1 validation, 1 test

Randomized the data ordering, repeated k-fold cross validation 25
times.

Feature weights (0)

— We calculated a separate 6 for each randomized run.

— Resulting in a vector of weights for each feature.

— We kept any features if the median of its weight vector was non-zero



Results with SVM:
predicting flirt intention

* Using my speech to predict whether | say | am flirting

=
speaker speaker

| say I’'m 72% 76%

flirting



Results with SVM:
Predicting flirt perception

* Using my speech to predict whether partner says | am flirting

Male Female
speaker speaker
Partner says 80% 68%
I’'m flirting



Summary: flirt detection

e Using my speech to predict whether | am flirting

\ES Female
speaker speaker

| say I'm 72% 76%
flirting
Partner says 80% 68%

I’'m flirting



Detecting awkward and friendly

speakers

 Using what | do & what my date does to predict what my date
calls me

* Simpler (logistic regression) classifier

__________Awkward___Friendly

\Y F \Y F
Using speaker 63% 51 72 68
words/speech
+ partner 64 64 73 75

words/speech



What makes someone seem friendly?
“Collaborative conversational style”

e Related to the “collaborative floor” of Edelsky (1981), Coates (1996)
— Collaborative completions (Lerner 1991, 1996)

e M: And I’m wearing a green shirt.
* F: And blue pants.

— Clarifications
* F:I'm working at Pottery Barn this summer.
e M: I'm sorry, who?

— Other questions
— You
— Laughter

— Plus perhaps
e Appreciations (for women)
e Overlaps (for men)



What makes someone seem friendly?
“Collaborative conversational style”

* Related to the “collaborative floor” of Edelsky (1981),
Coates (1996)

— Collaborative completions (Lerner 1991, 1996)
e M: And I’'m wearing a green shirt.
* F: And blue pants.

— Clarifications
* F:I'm working at Pottery Barn this summer.
e M: I'm sorry, who?

— Other questions
— You
— Laughter

— Plus perhaps
e Appreciations (for women)
e QOverlaps (for men)



Based on results analysis,

which features we theConCIUSions — fOr daters

most predictive

* Talking about your advisor is a bad idea on a date

* Sympathy is a good idea, if you’'re a guy
e Passion is good, if you’re a woman
* Food is good, if you eat



Conclusions — for computer
science

—We can do automatic extraction of rich social

variab
—For at

es from speec

east this varia

n and text.

ole (“does speaker intend to

flirt”) we beat human performance
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