
Natural Language Processing

 Lecture 2: text classification

Dan Goldwasser

The 10000 feet view*

• NLP is about models that can process human languages.
• That’s a pretty open definition.. We need a better definition!

*more like 10000000000

“Time flies like an arrow.”
Interpretation 1: Time moves forward similar to how an arrow flies.
Interpretation 2: This is a command, telling you to measure the speed of the
flies similar to how you would measure the speed of an arrow.
…(several other options)

Which one of these two options?

Is the word “time” a verb or a noun?

Text Classification

• Classification is a fundamental and well-understood machine
learning tool.

• It also provides a useful abstraction for many NLP tasks!
• Typically relying on a supervised learning pipeline:

• Collect a large dataset of relevant texts, annotate with relevant labels.
• Build a classifier using one of many possible learning algorithms.
• Hopefully, it generalizes to new data.

• In the next two lecture we’ll talk about this pipeline (evaluation,
learning algorithms, etc.).

BUT also …

Text Classification

• Text classification is more than “dumping data on an algorithm”

• It’s a way to model different aspects of text interpretation.
• I.e., how do you formulate the classification task?
• How do you decide what are the relevant labels?

• It’s a way to introduce relevant linguistic knowledge.
• What are the relevant features?
• What kind of assumptions are you making by picking different choices?

Display: Positive

Speakers: Negative

Performance: Positive

Price: Negative

I just bought company-A

newest laptop. The display is

awesome, the speakers are not

that great. I’m happy with the

performance, but I think they

charge too much for it!

Sentiment Classification

• Sentiment Analysis
• Interpretation of product reviews:

positive/negative/neutral
• Prediction is done overall entire text

• Aspect based sentiment
• Identify the product aspects users care

about
• identify and associate sentiment with

these aspects based on text

Sentiment Classification

• How should we define it as a classification task?
• What could be useful features here?
• What assumptions are you making?

I just bought company-A

newest laptop. The display is

awesome, the speakers are not

that great. I’m happy with the

performance, but I think they

charge too much for it!

Sentiment Classification, take-2

Dude, I just watched this horror

flick! Selling points: nightmares

scenes, torture scenes, terrible

monsters that was so bad a##!

Don’t buy the popcorn it was

terrible, the monsters selling it

must have wanted to torture me,

it was so bad it gave me

nightmares!

Deceptive Reviews

Finding Deceptive Opinion Spam by Any Stretch of the Imagination. Ott etal. ACL 2011

What should your learning algorithm look at?

Power Relations

Echoes of Power: Language Effects and Power Differences in Social Interaction. Danescu-Niculescu-Mizil et-al . WWW 2012.

Blah
Unacce
ptable
blah

Your honor, I
agree blah
blah blah

What should your learning algorithm look at?

Power Relations

Communicative behaviors are “patterned and

coordinated, like a dance” [Niederhoffer and Pennebaker 2002]

Echoes of Power: Language Effects and Power Differences in Social Interaction.
Danescu-Niculescu-Mizil et-al . WWW 2012.

Text Classification

• Assigning text to categories
• Spam/phishing detection
• Sentiment/stance analysis
• Topic classification
• Authorship
• Author profile: gender, age, education,…

• Many, many more examples!

Build an intuition – which problems are easy and which ones hard?

What makes a text classification task hard?

Basic Definitions

• Given: D a set of labeled examples {<x,y>}
• Goal: Learn a function f(x) s.t. f(x) = y

• Note: y can be binary, or categorical (multi-class)
• The input x is represented as a vector of features

• Break D into three parts:
• Training set (used by the learning algorithm)
• Test set (evaluate the learned model)
• Development set (tuning the learning algorithm)

• Evaluation:
• performance measured over the test set
• Accuracy: proportion of correct predictions (test data)

Precision and Recall

• Given a dataset, we train a classifier that gets 99% accuracy
• Did we do a good job?
• Build a classifier for brain tumor:

• 99.9% of brain scans do not show signs of tumor
• Did we do a good job?

• By simply saying “NO” to all examples we reduce the error by a
factor of 10!

• Clearly Accuracy is not the best way to evaluate the learning system
when the data is heavily skewed!

• Intuition: we need a measure that captures the class we care
about! (rare)

13

Precision and Recall

• The learner can make two kinds of mistakes:
• False Positive
• False Negative

• Precision:
• “when we predicted the rare class, how often are we right?”

• Recall
• “Out of all the instances of the rare class, how many did we catch?”

14

True Label: True Label:

Predicted: True Positive False Positive

Predicted: False
Negative

True Negative

01

1

0

F Score

• Precision and Recall give us two reference points to compare learning
performance

• Which algorithm is better?

• Option 1: Average
• Option 2: F-Score

15

Precision Recall Average F Score

Algorithm 1 0.5 0.4 0.45 0.444

Algorithm 2 0.7 0.1 0.4 0.175

Algorithm 3 0.02 1 0.51 0.0392

Properties of f-score:
• Ranges between 0-1
• Prefers precision and recall

with similar values

We need a single score

Linear Classification Models

• Linear relationship between input and output

Predicted Class

Feature weights

Vector generated by a feature function

Bag of Words Feature Representation

• BoW: Simplest (yet surprisingly effective) choice

• Issues: dropping function words, long tail, stemming
• Should liked and Liked be separate features?

• Features are associated with weights.

• Final decision:

I You He Liked liked Apples Pen . ? !

1 0 0 0 1 1 0 1 0 0

0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0

Simple Example: Naïve Bayes

• Naïve Bayes: simple probabilistic classifier
• Given a set of labeled data:

• Documents D, each associated with a label v
• Simple feature representation: BoW

• Learning:
• Construct a probability distribution P(v|d)

• Prediction:
• Assign the label with the highest probability

• Relies on strong simplifying assumptions

Naïve Bayes: Independence
Assumptions

• Basic idea: (sentiment analysis)
• “I loved this movie, it’s awesome! I couldn’t stop laughing for two

hours!”
• Mapping input to label can be done by representing the

frequencies of individual words
• Document = word counts

• Simple, yet surprisingly powerful representation!
• Used in Naïve Bayes as independence assumptions

Bayes Rule

• Naïve Bayes is a simple probabilistic classification method, based
on Bayes rule.

P(v | d) = P(d | v)
P(v)

P(d)

Naïve Bayes

• The learner considers a set of candidate labels, and picks the
most probable given the observed data.

• Such maximally probable assignment is called maximum a
posteriori assignment (MAP); Bayes theorem is used to compute
it:

 vMAP = argmaxv ∈ V P(v|D) = argmaxv ∈ v P(D|v) P(v)/P(D)

 = argmaxv ∈ V P(D|v) P(v)

Since P(D) is the same for all v∈ V

Naïve Bayes

• How can we compute P(v |D)?
• Basic idea: represent document as a set of features, such as BoW features

vMAP = argmaxvjÎV

P(x1,x2 , ...,xn | v j)P(v j)

P(x1,x2 , ...,xn)

 = argmaxvjÎVP(x1,x2 , ...,xn | v j)P(v j)

)x,...,x,x|P(vargmax x)|P(vargmax v n21jVvjVvMAP jj  ==

Parameter Estimation

• Given training data we can estimate the two terms
• Estimating P(v) is easy. For each value v count how many times it appears in

the training data.

•

• However, it is not feasible to estimate P(x1,…, xn | v)
• In this case we have to estimate, for each target value, the probability of

each instance (most of which will not occur)
• In order to use a Bayesian classifier in practice, we need to make assumptions

that will allow us to estimate these quantities.

VMAP = argmaxv P(x1, x2, …, xn | v) P(v)

23

Question: Assume binary xi’s. How many parameters does the model require?

Detour: the chain rule
The joint probability P(x1,..,xn) can be rewritten as a product:

Repeating this process n times for each variable results in:

For example:

https://en.wikipedia.org/wiki/Chain_rule_(probability)

NB: Independence Assumptions
Conditional Independence:

Assume feature probabilities are independent given the label

 P(xi|y) = P(xi|xk; y) (forall feature pairs, i,k)

Naive
assumption

Bayes
rule

Question: How many
parameters do we need to

estimate now?

Simple example

P(y) P(x1, x2 , x3|y) = P(x1, x2 , x3 , y)

using the chain rule

P(x1, x2 , x3 , y)=P(x1|x2 , x3 , y) P(x2 , x3 , y)

=P(x1|x2 , x3 , y) P(x2|x3 , y) P(x3 , y)

=P(x1|x2 , x3 , y) P(x2|x3 , y) P(x3 |y) P(y)

assuming conditional independence

=P(x1|y) P(x2|y) P(x3 |y) P(y)  we end up with Naïve Bayes

26

Naïve Baye: independence
assumptions

• Bag of words representation:
• Word position can be ignored

• Conditional Independence: Assume feature probabilities are
independent given the label

• P(xi|vj) = P(xi|xi-1; vj)

• Both assumptions are not true
• Help simplify the model
• Simple models work well

Independence Assumptions

Conditional Independence: P(xi|vj) = P(xi|xi-1; vj)

Dude, I just watched this horror

flick! Selling points: nightmares

scenes, torture scenes, terrible

monsters that was so bad a##!

P(“terrible”|pos) =? P(“terrible”| “food”, pos)

P(“terrible”|pos) =? P(“terrible”| “monsters”, pos)

Naïve Bayes

29

P(x1,x2 , ...,xn | v j) =

 = P(x1 | x2 , ...,xn , v j)P(x2 , ...,xn | v j)

 = P(x1 | x2 , ...,xn , v j)P(x2 | x3 , ...,xn , v j)P(x3 , ...,xn | v j)

 =

 = P(x1 | x2 , ...,xn , v j)P(x2 | x3 , ...,xn , v j)P(x3 | x4 , ...,xn , v j)...P(xn | v j)

VMAP = argmaxv P(x1, x2, …, xn | v)P(v)

Assumption: feature values are independent given the target value

 = P(x i | v j)
i=1

n

Õ

Estimating Probabilities

n

n

documents) (v#

documents) v in training in appears (word #
 v)|P(word kk

k ==

Data sparsity is a problem
 -- if is small, the estimate is not accurate
 -- if is 0, it will dominate the estimate: we will never predict
 if a word that never appeared in training (with)
 appears in the test data

n

kn v

v

 v)|P(word kHow do we estimate ?

Assume a document classification problem, using word features

Zero counts are a problem

• If an attribute value does not occur in training example, we assign
zero probability to that value: P(xj |y) = 0

• How does that affect the conditional probability P(y | x) ?
(assuming that xj appears in x)

• It equals 0
• Why is this a problem?
• Adjust for zero counts by “smoothing” probability estimates

Robust Estimation of Probabilities

• There are many ways to do it, some better justified;
• An empirical issue.

• Here:
• nk is #(of occurrences of the word in the presence of v)
• n is #(of occurrences of the label v)
• p is a prior estimate of v (e.g., uniform)
• m is equivalent sample size (# of labels)

• Laplace Rule: for the Boolean case, p=1/2 , m=2

32

mn

mpn
 v)|P(x k

k
+

+
=

2n

1n
 v)|P(x k

k
+

+
=

Adds uniform prior

Smoothing: Laplace correction

0132No

171310Yes

HighMediumLow

Y

X1

P[X1 = High | Y = No] =

Laplace correction

Simple version:
Numerator: add 1
Denominator: add k, where k=number
of possible values of X

0 +1

(2 +13+ 0) + 3

Numerical Stability

• Recall: NB classifier:

• Multiplying probabilities can get us into problems!
• Imagine computing the probability of 2000 independent coin

flips
• Most programming environments: (.5)2000=0

Numerical Stability

• Our problem: Underflow Prevention
• Recall: log(xy) = log(x) + log(y)

• better to sum logs of probabilities rather than multiplying
probabilities.

• Class with highest final un-normalized log probability score is still
the most probable.




+=
positionsi

jij
Cc

NB cxPcPc)|(log)(logargmax
j

Naïve Bayes

• Easy to implement
• Converges very quickly

• Learning is just counting

• Performs well in practice
• Applied to many document classification tasks
• If data set is small, NB can perform better than sophisticated algorithms

• Strong independence assumptions
• If assumptions hold: NB is the optimal classifier
• Even if not, can perform well

Naïve Bayes: two classes case

• Assume d-dimensional binary input vector, classifying between
two classes.

• We can rewrite the decision rule as follows:

• And using the Naïve Bayes assumptions:

37

Naïve Bayes: two classes case

• Let’s simplify notation:
– Rename as
– Rename as
– Rename as

• As a result, we can define:

And express the decision rule:

38

Last step:

Naïve Bayes: two classes case

• Now, collect the constants:

• And, take the log:

39

Naïve Bayes: two classes case

40

Note that the value of this term is

not dependent on x, it is a constant

value! Let’s denote it as b

This term depends on xj, let’s

rename it as wj

Making this

substitution we can a

familiar term:

NB Expressivity Revisited

• The independence assumptions made by NB capture the
connection between each feature and the output.
– Unlike DT where each path defines this connection over a

combination of features.

• If we define the NB over the log P(Y) P(X|Y) we get

Which looks like a Linear model : Ax+b
Let’s take a closer look!




+=
positionsi

jij
Cc

NB cxPcPc)|(log)(logargmax
j

Linear Classifiers

• Linear threshold functions
• Associate a weight (wi) with each feature (xi)
• Prediction: sign(b + wTx) = sign (b + Σ wi xi)

• b + wTx ≥ 0 predict y=1
• Otherwise, predict y=-1

• NB is a linear threshold function
• Weight vector is assigned by computing conditional probabilities

• In fact, linear threshold functions are a very popular
representation!

Linear Classifiers

Each point in this space is an
instance (x), the label color
coded (black,red)

The coordinates (e.g., x1,x2), are
determined by feature activations +

+++
+

+
+

+

-

-

-

-
-

-

++

+

+
+

+

+

sign(b + wTx) = sign (b + Σ wi xi)

Expressivity

• How expressive are linear functions, i.e., is there a linear function that is
consistent with the data

• A famous non-linearly separable example (XOR):

++++
+

+
++++++
+++

++++
+

+
++++++
+++

--

--

Expressivity

By transforming the feature space
these functions can be made linear

Represent each point in 2D as (x,x2)

Expressivity

More realistic scenario: the data
is almost linearly separable,
except for some noise.

++++
+

+
++++++
+++

sign(b + wTx)

-

+
-

-+
++++

+

+
++++++
+++

+
-

Features

• Low expressivity models depends on having a relevant feature
representation.

• Relevant: can characterize the target function without blowing up the
space

• We can design complex features

f1(x) =
1 x1 is capitalized

0 otherwise

ì
í
î

fk (x) =
1 x contains ''good '' more than twice

0 otherwise

ì
í
î

Feature choices

• So far we have discussed BoW representation
• In fact, you can use a very rich representation

• Example: identifying names
using capitalization patterns
• Question: what are good features for..

• Deception detection?
• Identifying status on social media?
• Predicting ”virality”?
• Identifying emergency situations?

• Can/should we go beyond word representations?

f1(x) =
1 x1 is capitalized

0 otherwise

ì
í
î

Perceptron

• One of the earliest learning algorithms
• Introduced by Rosenblatt 1958 to model neural learning

• Goal: directly search for a separating hyperplane
• If one exists, perceptron will find it
• If not, …

• Online algorithm
• Considers one example at a time (NB – looks at entire data)

• Error driven algorithm
• Updates the weights only when a mistake is made

Perceptron

• We learn f:X→ {-1,+1} represented as

• Where X= {0,1}n

• Given Labeled examples: {(x1, y1), (x2, y2),…(xm, ym)}

5
0

1. Initialize w=0

 2. Cycle through all examples, until no more errors are made

 a. Predict the label of instance x to be y’ = sgn{wx)

 b. If y’≠y, update the weight vector:

 w = w + r y x (r - a constant, learning rate)

 Otherwise, if y’=y, leave weights unchanged.

RnÎ

f =sign{wx)

Note about threshold

• On previous slide, Perceptron has no threshold
• But we don’t lose generality:

5
1



−



,

1,

ww

xxx

0x

1x

=•xw

0x

1x

 01,, =•− xw 

Perceptron Convergence

• The Perceptron algorithm defines a search procedure over the
space of linear functions.

• When do we move from one search-state to another?

• The stopping criteria of the perceptron algorithm is “no more
mistakes over the training data”

• What kind of convergence guarantees can we get?
• We analyze Perceptron in terms of the number of mistakes the algorithm

will make until convergence.
• Note that it is different from number of iterations of the data!

• This analysis will rely on the notion of margin

52

Margin
• The margin of a hyperplane for a dataset is the distance

between the hyperplane and the data point nearest to it.

|wx+b|

 w

Distance: To help the
discussion,
let’s consider the
signed distance:
(why?)

(wxi+b)yi

 w

Margin

• The margin of a hyperplane for a dataset is the distance between
the hyperplane and the data point nearest to it.

• The margin of a data set (𝛾) is the maximum margin possible for
that dataset using any weight vector.

Mistake Bound for Perceptron

• Let D={(xi, yi)} be a labeled dataset that is separable

• Let ||xi||< R for all examples.

• Let 𝛾 be the margin of the dataset D.

• Then, the perceptron algorithm will make at most R2/ 𝛾

2 mistakes on the data.

Perceptron: Realistic Version

• We learn f:X→ {-1,+1} represented as f =sgn{wx)

• Where X={0,1}n

• Given Labeled examples: {(x1,y1), (x2,y2),…(xm,ym)}

5
6

1. Initialize w=0

 2. For Iter = 0,…,T

 3. Iterate over all the examples

 a. Predict the label of instance x to be y’ = sgn{wx)

 b. If y’≠y, update the weight vector:

 w = w + r y x (r - a constant, learning rate)

 Otherwise, if y’=y, leave weights unchanged.

RnÎ

Practical Example

Source: Scaling to very very large corpora for natural language disambiguation Michele Banko, Eric Brill. MSR, 2001.

Task: context sensitive spelling

“I didn’t know {weather,whether} to laugh or cry”

Case Study 1: Deception Detection

• Credits:
Slides based on D. Jurafsky slides.

Describes work done in papers:

Dan Jurafsky, Rajesh Ranganath, and Dan McFarland. 2009.
Extracting Social Meaning: Identifying Interactional Style in
Spoken Conversation. Proceedings of NAACL HLT 2009.

Rajesh Ranganath, Dan Jurafsky, and Dan McFarland. 2009. It's
Not You, it's Me: Detecting Flirting and its Misperception in
Speed-Dates. EMNLP-2009

Case Study 2: Detecting Social Meaning

Detecting social meaning:

• Given speech and text from a conversation

• Can we detect `styles’, like whether a speaker is
– Awkward?

– Flirtatious?

– Friendly?

• Can we tell if the speakers like each other?

• Dataset:
– 991 4-minute “speed-dates”

– Each participant rated their partner and themselves for these styles

speed
date

setup

What do you do for fun? Dance?

Uh, dance, uh, I like to go, like camping. Uh, snowboarding, but I'm not
good, but I like to go anyway.

You like boarding.
Yeah. I like to do anything. Like I, I'm up for anything.

Really?
Yeah.

Are you open-minded about most everything?
Not everything, but a lot of stuff-
What is not everything [laugh]

I don't know. Think of something, and I'll say if I do it or not. [laugh]
Okay. [unintelligible].
Skydiving. I wouldn't do skydiving I don't think.

Yeah I'm afraid of heights.
F: Yeah, yeah, me too.

M: [laugh] Are you afraid of heights?
F: [laugh] Yeah [laugh]

The Speed Date corpus
• 991 4-minute dates

– 3 events, each with ~20x20=400 dates, some data loss
– Participants: graduate student volunteers in 2005

• participated in return for the chance to date

• Speech
– ~60 hours, from shoulder sash recorders; high noise

• Transcripts
– ~800K words, hand-transcribed, w/turn boundary times

• Surveys
– (Pre-test surveys, event scorecards, post-test surveys)

– Date perceptions and follow-up interest
– General attitudes, preferences, demographics

• Largest experiment with audio, text, + survey info

What we attempted to predict

• Conversational style:

– How often did you behave in the following ways on this date?

– How often did they behave in the following ways on this date?

• On a scale of 1-10 (1=never, 10=constantly)

1. flirtatious

2. friendly

3. awkward

4. assertive

Features

• Prosodic
– pitch (min, mean, max, std)

– intensity (min, max, mean, std)

– duration of turn

– rate of speech (words per second)

• Dialog
– questions

– backchannels (“uh-huh”, “yeah”)
– appreciations (“Wow!”, “That’s great!”)

• Lexical
– negative emotion (bad, weird, crazy, hate) words

– storytelling words (past tense) + food words (eat, dinner)

– love and sexual/emotional words (love, passionate, screw)

– personal pronouns (I, you, we, us)

Features extracted within turns

F0 max in
this turn

F0 min in
this turnF0 max in

this turn

Features: Pitch

• F0 min, max, mean

– Thus to compute, e.g., F0 min for a conversation side

• Take F0 min of each turn (not counting zero values)

• Average over all turns in the side

• “F0 min, F0 max, F0 mean”

– We also compute measures of variation

• Standard deviation, pitch range

• F0 min sd, F0 max sd, F0 mean sd

• pitch range = (f0 max – f0 min)

Features: other prosodic

• Intensity min, max, mean, std

– computed as for pitch

• Duration of turn

• Total time for conversation side

• Rate of speech (words per second)

Dialog act features

• Questions # of questions in side

• Laughter # of instances of laughter in side

• Turns total # of turns in a side

• Backchannels # of backchannels in side
– Uh-huh. Yeah. Right. Oh, okay.

• Appreciations # of appreciations in side
– Wow. That’s true. Oh, great! Oh, gosh!

• Regular expressions drawn from hand-labeled Switchboard
Dialogue Act Corpus (Jurafsky, Biasca, Shriberg 1997)

Appreciations Backchannels

• Wow.

• Oh, wow.

• That's great.

• That's good.

• That's right.

• Oh, no.

• Oh, my goodness.

• That's true.

• Well, that's good.

• Oh, that's great.

• Oh, gosh.

• Great.

 Uh-huh

 Yeah

 Right

 Oh

 Yes

 Huh

 Oh, yeah

 Okay

 Sure

 Really

 Oh, really

Clatifications

I’ve been
goofing off

big time

You’ve been
what?

I’ve been
goofing off

big time

Collaborative Completion

• a turn where a speaker completes the utterance begun by the alter
(Lerner, 1991; Lerner, 1996).

 Heuristic:

• first word of sentencei is predictable from last two words of
sentencei-1 (using a trigram grammar trained on Switchboard)

And I’m wearing a
yellow shirt

And black pants

Dialog feature:

Collaborative Completion

• Heuristic: first word of sentencei is predictable from last
two words of sentencei-1

• Result: Tends to find “locally coherent phrasal answers”
• M: What year did you graduate?

• F: From high school?

• F: What department are you in?

• M: The business school.

– But not:
• F: What department are you in?

• M: I’m in the teacher education program.

Disfluency Features

• UH/UM: # of filled pauses (uh or um) in side
• M: Um, eventually, yeah, but right now I want to get some more

experience, uh, in research.
• F: Oh.
• M: Uh, so I will probably work for, uh, a research lab for, uh, big

companies.

• RESTART: # of disfluent restarts in side
• Uh, I–there’s a group of us that came in–

• OVERLAP: # of turns in side where speakers overlapped
• M: But-and also obviously–

– F: It sounds bigger.
• M: –people in the CS school are not quite as social in general as

other–

LIWC

• Linguistic Inquiry and Word Count
– Pennebaker, Francis, & Booth, 2001

• dictionary of 2300 words grouped into > 70 classes
– negative emotion (bad, weird, hate, problem, tough)
– sexual (love, loves, lover, passion, passionate, sex,)
– 1st person pronouns (I me mine myself I’d I’ll I’m…)
– 2nd person pronouns (you, you’d you’ll your you’ve…)
– ingest (food, eat, eats, cook, dinner, drink, restaurant…)
– swear (hell, sucks, damn, fuck,…)
– …

• after 9/11
– greater negative emotion
– more socially engaged

Lexical Features

Architecture: 6 binary classifiers

– Female ±Awkward, Male ±Awkward,

– Female ±Friendly, Male ±Friendly,

– Female ±Flirtatious, Male ±Flirtatious,

• Multiple classifier experiments

– L1-regularized logistic regression

– SVM w/RBF kernel

– 5-fold cross-validation

• tested on held-out test set of 10% highest and 10%
lowest

• 5 folds: 3 train, 1 validation, 1 test

Experiments

• K-fold cross validation.

• 5 folds: 3 train, 1 validation, 1 test

• Randomized the data ordering, repeated k-fold cross validation 25
times.

• Feature weights (θ)
– We calculated a separate θ for each randomized run.

– Resulting in a vector of weights for each feature.

– We kept any features if the median of its weight vector was non-zero

Results with SVM:

predicting flirt intention

• Using my speech to predict whether I say I am flirting

Male
speaker

Female
speaker

I say I’m
flirting

72% 76%

Results with SVM:

Predicting flirt perception

• Using my speech to predict whether partner says I am flirting

Male
speaker

Female
speaker

Partner says
I’m flirting

80% 68%

Summary: flirt detection

• Using my speech to predict whether I am flirting

Male
speaker

Female
speaker

I say I’m
flirting

72% 76%

Partner says
I’m flirting

80% 68%

Detecting awkward and friendly

speakers
• Using what I do & what my date does to predict what my date

calls me

• Simpler (logistic regression) classifier

Awkward Friendly

M F M F

Using speaker
words/speech

63% 51 72 68

+ partner
words/speech

64 64 73 75

What makes someone seem friendly?

“Collaborative conversational style”

• Related to the “collaborative floor” of Edelsky (1981), Coates (1996)

– Collaborative completions (Lerner 1991, 1996)
• M: And I’m wearing a green shirt.

• F: And blue pants.

– Clarifications
• F: I'm working at Pottery Barn this summer.

• M: I'm sorry, who?

– Other questions

– You

– Laughter

– Plus perhaps
• Appreciations (for women)

• Overlaps (for men)

What makes someone seem friendly?

“Collaborative conversational style”

• Related to the “collaborative floor” of Edelsky (1981),
Coates (1996)
– Collaborative completions (Lerner 1991, 1996)

• M: And I’m wearing a green shirt.
• F: And blue pants.

– Clarifications
• F: I'm working at Pottery Barn this summer.
• M: I'm sorry, who?

– Other questions
– You
– Laughter
– Plus perhaps

• Appreciations (for women)
• Overlaps (for men)

Conclusions – for daters

• Talking about your advisor is a bad idea on a date

• Sympathy is a good idea, if you’re a guy

• Passion is good, if you’re a woman

• Food is good, if you eat

Based on results analysis,
which features we the
most predictive

Conclusions – for computer

science

–We can do automatic extraction of rich social
variables from speech and text.

–For at least this variable (“does speaker intend to
flirt”) we beat human performance

	Slide 1: Natural Language Processing Lecture 2: text classification
	Slide 2: The 10000 feet view*
	Slide 3: Text Classification
	Slide 4: Text Classification
	Slide 5: Sentiment Classification
	Slide 6: Sentiment Classification
	Slide 7: Sentiment Classification, take-2
	Slide 8: Deceptive Reviews
	Slide 9: Power Relations
	Slide 10: Power Relations
	Slide 11: Text Classification
	Slide 12: Basic Definitions
	Slide 13: Precision and Recall
	Slide 14: Precision and Recall
	Slide 15: F Score
	Slide 16: Linear Classification Models
	Slide 17: Bag of Words Feature Representation
	Slide 18: Simple Example: Naïve Bayes
	Slide 19: Naïve Bayes: Independence Assumptions
	Slide 20: Bayes Rule
	Slide 21: Naïve Bayes
	Slide 22: Naïve Bayes
	Slide 23: Parameter Estimation
	Slide 24: Detour: the chain rule
	Slide 25: NB: Independence Assumptions
	Slide 26: Simple example
	Slide 27: Naïve Baye: independence assumptions
	Slide 28: Independence Assumptions
	Slide 29: Naïve Bayes
	Slide 30: Estimating Probabilities
	Slide 31: Zero counts are a problem
	Slide 32: Robust Estimation of Probabilities
	Slide 33: Smoothing: Laplace correction
	Slide 34: Numerical Stability
	Slide 35: Numerical Stability
	Slide 36: Naïve Bayes
	Slide 37: Naïve Bayes: two classes case
	Slide 38: Naïve Bayes: two classes case
	Slide 39: Naïve Bayes: two classes case
	Slide 40: Naïve Bayes: two classes case
	Slide 41: NB Expressivity Revisited
	Slide 42: Linear Classifiers
	Slide 43: Linear Classifiers
	Slide 44: Expressivity
	Slide 45: Expressivity
	Slide 46: Expressivity
	Slide 47: Features
	Slide 48: Feature choices
	Slide 49: Perceptron
	Slide 50: Perceptron
	Slide 51: Note about threshold
	Slide 52: Perceptron Convergence
	Slide 53: Margin
	Slide 54: Margin
	Slide 55: Mistake Bound for Perceptron
	Slide 56: Perceptron: Realistic Version
	Slide 57: Practical Example
	Slide 58: Case Study 1: Deception Detection
	Slide 59
	Slide 60: Detecting social meaning:
	Slide 61: speed date setup
	Slide 62
	Slide 63: The Speed Date corpus
	Slide 64: What we attempted to predict
	Slide 65: Features
	Slide 66: Features extracted within turns
	Slide 67: Features: Pitch
	Slide 68: Features: other prosodic
	Slide 69: Dialog act features
	Slide 70: Appreciations Backchannels
	Slide 71: Clatifications
	Slide 72: Collaborative Completion
	Slide 73: Dialog feature: Collaborative Completion
	Slide 74: Disfluency Features
	Slide 75: LIWC
	Slide 76: Lexical Features
	Slide 77: Architecture: 6 binary classifiers
	Slide 78: Experiments
	Slide 79: Results with SVM: predicting flirt intention
	Slide 80: Results with SVM: Predicting flirt perception
	Slide 81: Summary: flirt detection
	Slide 82: Detecting awkward and friendly speakers
	Slide 83: What makes someone seem friendly? “Collaborative conversational style”
	Slide 84: What makes someone seem friendly? “Collaborative conversational style”
	Slide 85: Conclusions – for daters
	Slide 86: Conclusions – for computer science

