
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 15: Quantization

PREVIOUSLY: WORKING WITH LARGE MODELS

2

• Previously, we discussed how to train and run inference on models via
parallelizing them across many GPUs.

• We also discussed how we can use large models even if we don’t have access
to large GPU clusters.

• We looked into how to train models that are small enough for us to run
inference (i.e., forward passes), but too large for us to fine-tune.

• Parameter-efficient fine-tuning (PEFT)

PREVIOUSLY: WORKING WITH LARGE MODELS

3

• But what if the model is too large to fit in memory even for inference alone?

• Is there some way we can make the model smaller and retain accuracy?

• Or minimize any loss to accuracy?

• Smaller models would be much cheaper.

• Large models are expensive to train.

[Touvron et al., 2023]

PREVIOUSLY: WORKING WITH LARGE MODELS

4

• tCO2eq is a unit meaning “metric tons of CO2 equivalent.”

• This table only considers the power requirements of GPUs, and not the cost of
running the CPUs, interconnects, datacenter cooling, etc.

• This table also only considers the cost of training.

• For popular models, the cost of inference quickly outpaces the cost of
training.

[Touvron et al., 2023]

PREVIOUSLY: WORKING WITH LARGE MODELS

5

• Future AI data centers and clusters are projected to continue using more and
more power,

• And therefore, producing more and more greenhouse gases.

[Jafari et al., Projecting the Electricity Demand Growth of Generative AI Large Language Models in the US, 2024]

PREVIOUSLY: WORKING WITH LARGE MODELS

6

• Future AI data centers and clusters are projected to continue using more and
more power,

• And therefore, producing more and more greenhouse gases.

[Jafari et al., Projecting the Electricity Demand Growth of Generative AI Large Language Models in the US, 2024]

MODEL COMPRESSION

7

• Effective model compression can potentially help to reduce the costs of
training and inference.

• Compression can help to broaden access to large models.

• There are three broad categories of model compression techniques:

• Quantization: Reduce the precision of the floating-point numbers in the
model.

• How can we reduce the precision without adversely affecting the
model’s accuracy?

• It’s not so simple, especially with very low precision.

• Distillation: Use a larger model to train a small model.

• Pruning: Remove parts of the model while minimizing any adverse effects
on model performance.

MODEL COMPRESSION

8

• Why should we think it is even possible to compress models?

• Trained models may be overparameterized.

• I.e., they have more parameters than they need to learn a task.

• Du and Lee (2018) showed that:

MODEL COMPRESSION

9

• But there are some caveats to the findings of Du and Lee (2018):

• They only considered shallow networks.

• They assumed the loss function is convex.

• Loss functions for almost all large real-world models are not convex.

• Allen-Zhu et al. (2018) showed that if a network contains a subnetwork that
is able to perform the target task,

• And there is sufficient available training data,

• Then the overparameterized network can learn the task without
overfitting.

• So there is hope that large models might contain these smaller
“subnetworks” that are able to perform tasks with similar accuracy.

QUANTIZATION

10

• The first model compression approach we will consider is quantization.

• We can reduce the size of the model by reducing the precision of each
parameter.

• This floating-point number represents (- 1) s⋅2e- 127⋅1. f

• Where s is the sign, e is the exponent (also called range), and f is the fraction
(also called mantissa or precision) in binary.

[en.wikipedia.org/wiki/Bfloat16_floating-point_format]

QUANTIZATION

11

• There are smaller floating-point formats:

• bf16 or bfloat16 (“Brain float-16”; Google Brain, 2018) allocates more bits to
the exponent (same number of bits as fp32) and fewer bits to the fraction.

• A wider range of numbers can be represented in bf16 compared to fp16 .

• At the expense of the precision.

[en.wikipedia.org/wiki/Bfloat16_floating-point_format]

QUANTIZATION DURING TRAINING

12

• Training is very sensitive to floating-point precision.

• Simply reducing the precision of all parameters from fp32 to fp16 leads to
instability during training.

F16

[Narang et al., 2018]

QUANTIZATION DURING TRAINING

13

• Why do quantized models diverge during training?

• Inspect the gradients of the parameters during fp32 training, and plot a
histogram of their magnitudes:

[Narang et al., 2018]

QUANTIZATION DURING TRAINING

14

• Possible reason for training instability when using fp16:

• Small gradients are important for training.

• When naively switching from fp32 to fp16 , they are rounded to zero.

[Narang et al., 2018]

QUANTIZATION DURING TRAINING

15

• Possible reason for training instability when using fp16:

• Small gradients are important for training.

• When naively switching from fp32 to fp16 , they are rounded to zero.

• This is especially problematic for larger models since they require a smaller
learning rate for training.

• Is there a way we can avoid underflow?

QUANTIZATION DURING TRAINING

16

• What if we keep the weights in high precision (fp32) but perform and forward
and backward pass in lower precision (fp16)?

• But we still have the problem where the gradients computed in the backward
pass will be rounded to zero.

• What if we scale the gradients by a constant factor?

 Wnew = W - 𝛾
𝜕L
𝜕W

 = W -
𝛾

S
𝜕

𝜕W
(SL)

• This is possible due to the linearity of the derivative operator.

• This has the effect of shifting the magnitude of the gradients further away
from 0, where there is a much lower risk of underflow.

MIXED PRECISION TRAINING

17

• This approach is called mixed-precision training.

[Narang et al., 2018]

MIXED PRECISION TRAINING

18

• This approach is called mixed-precision training.

• With an appropriate value for S, it can perform very similar to full-precison
training.

[Narang et al., 2018]

MIXED PRECISION TRAINING

19

• This approach is called mixed-precision training.

• With an appropriate value for S, it can perform very similar to full-precison
training.

• We can reduce the memory requirement of training by almost half:

• Only the model parameters require high-precision.

• Everything else (the activations, gradients) can be stored in half precision.

WE DON’T NEED 32-BITS PER PARAMETER

20

• Is there a middle-ground between fp32 and fp16 that would maintain
stability during training?

• What if we used the same number of exponent bits as fp32 (8 bits) and the
same number of fraction bits as fp16 (10 bits)?

[Kharya, TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x, 2020]

TF32

21

• The proposed format is called TensorFloat-32 or tf32 (Nvidia, 2020).

• Note that only 19 bits are useful, and the remaining 13 bits are padding.

• So there are no memory savings as compared to fp32 , but arithmetic
operations can be much faster.

[Kharya, TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x, 2020]

TRAINING WITH TF32 VS FP32

22

• Experiments demonstrate that training/using models with tf32 is similar to
fp32 .

• For example, training a Transformer-XL model:

[Stosic, Training Neural Networks with Tensor Cores, 2020]

TRAINING WITH TF32 VS FP32

23

• Experiments demonstrate that training/using models with tf32 is similar to
fp32 .

• For example, training ResNeXt101:

[Stosic, Training Neural Networks with Tensor Cores, 2020]

QUANTIZED MODELS ARE FASTER

24

• In addition to reducing memory footprint,

• Quantization can significantly improve the speed of model operations.

• E.g., on an P100 GPU:

• fp64 (“double ” in C/C++/Java): 5.3 TFLOPs/s

• fp32 (“float ” in C/C++/Java): 10.6 TFLOPs/s

• fp16 : 21.2 TFLOPs/s

[en.wikipedia.org/wiki/Hopper_(microarchitecture)]

QUANTIZED MODELS ARE FASTER

25

• In addition to reducing memory footprint,

• Quantization can significantly improve the speed of model operations.

• Newer GPUs have specialized hardware for reduced-precision arithmetic.

• E.g., on an H200 GPU:

• fp64 (“double ” in C/C++/Java): 34 TFLOPs/s

• fp32 (“float ” in C/C++/Java): 67 TFLOPs/s

• tf32 : 495 TFLOPs/s

• fp16 : 990 TFLOPs/s

• bfloat16 : 990 TFLOPs/s

• int8 (“char ” in C/C++, “byte ” in Java): 1980 TOPs/s

[en.wikipedia.org/wiki/Hopper_(microarchitecture)]

MIXED PRECISION TRAINING

26

• But mixed-precision training isn’t completely free of instability.

• Lee et al., 2024, attempted to train GPT-2 for 188 different random initial
seed values.

• They used mixed-precision training with bf16 and tf32 formats.

• They found 18 of the 188 seeds diverged (about 5%).

• Some examples of diverged training runs:

MIXED PRECISION TRAINING

27

• But mixed-precision training isn’t completely free of instability.

• Lee et al., 2024, attempted to train GPT-2 for 188 different random initial
seed values.

• They used mixed-precision training with bf16 and tf32 formats.

• They found 18 of the 188 seeds diverged (about 5%).

• However, they used early stopping to be able to experiment with a larger
number seeds.

• So they estimate the true divergence rate is closer to 10% of seeds.

MIXED PRECISION TRAINING

28

• DeepSeek-AI, 2024, performs mixed-precision training where weights are
stored in fp32 and matrix products are computed in fp8 .

• Only one matrix product is shown here (“Fprop” means forward pass).

Y = XA
where X is the input,

Y is the output,

and A are the weights.

MIXED PRECISION TRAINING

29

• DeepSeek-AI, 2024, performs mixed-precision training where weights are
stored in fp32 and matrix products are computed in fp8 .

• Activations are in bf16 but are converted to fp8 for matrix multiplications.

Y = XA
where X is the input,

Y is the output,

and A are the weights.

Recall: In the backward pass,

we need to compute
𝜕L
𝜕A =

𝜕L
𝜕Y

𝜕Y
𝜕A = XT 𝜕L

𝜕Y (“Wgrad”)

𝜕L
𝜕X =

𝜕L
𝜕Y

𝜕Y
𝜕X =

𝜕L
𝜕Y AT (“Dgrad”)

MIXED PRECISION TRAINING

30

• DeepSeek-AI, 2024, performs mixed-precision training where weights are
stored in fp32 and matrix products are computed in fp8 .

Recall: In the backward pass,

we need to compute
𝜕L
𝜕A =

𝜕L
𝜕Y

𝜕Y
𝜕A = XT 𝜕L

𝜕Y (“Wgrad”)

𝜕L
𝜕X =

𝜕L
𝜕Y

𝜕Y
𝜕X =

𝜕L
𝜕Y AT (“Dgrad”)

MIXED PRECISION TRAINING

31

• DeepSeek-AI, 2024, performs mixed-precision training where weights are
stored in fp32 and matrix products are computed in fp8 .

Recall: In the backward pass,

we need to compute
𝜕L
𝜕A =

𝜕L
𝜕Y

𝜕Y
𝜕A = XT 𝜕L

𝜕Y (“Wgrad”)

𝜕L
𝜕X =

𝜕L
𝜕Y

𝜕Y
𝜕X =

𝜕L
𝜕Y AT (“Dgrad”)

MIXED PRECISION TRAINING

32

• NVIDIA (2025) recently proposed a mixed-precision training method where
weights are stored in fp32 and matrix products are computed in 4-bits.

MIXED PRECISION TRAINING

33

• They introduce a new 4-bit floating-point format called nvfp4 .

MIXED PRECISION TRAINING

34

• They introduce a new 4-bit floating-point format called nvfp4 .

EVEN SMALLER NUMBER FORMATS

35

• Smaller floating-point layouts are possible:

• fp8 or float8 : 1 bit sign, 4 bit exponent, 3 bit fraction

• fp4 or float4 : 1 bit sign, 2 bit exponent, 1 bit fraction

• Numbers can be converted into integers:

• int8

• int4

• int3

• int2

• int1 (binary)

HARDWARE SUPPORT FOR QUANTIZATION

36

• GPUs don’t support arbitrary floating-point or integer formats.

• We can imagine how fast int4 or fp4 operations would be, but most GPUs
simply don’t provide hardware acceleration support.

• Many software frameworks still don’t support many small number formats.

• PyTorch does not currently support int3 or fp4 (as of March 2025),

• And has limited support for int4 and fp8 .

• When we perform arithmetic operations using these number formats on GPUs
without hardware support, we first must convert them into a supported
number format.

HARDWARE SUPPORT FOR QUANTIZATION

37

• We can still use these smaller number formats, since they still provide
reduced memory footprint.

• The speed of the operation will be the same as the supported number
format.

• Number formats smaller than fp16 cause too much instability during
training,

• But inference is much more robust to quantization.

• Thus smaller number formats are currently only used for inference.

• Let’s see how to quantize models into these smaller formats for inference.

INT8 QUANTIZATION

38

• int8 operations are significantly faster
than floating-point for GPUs that provide
acceleration support.

• But naïvely quantizing the
weights/activations of a trained model
leads to significant approximation errors.

• For example, if we evaluate OPT on a
wide range of datasets: WinoGrande,
HellaSwag, PIQA, and LAMBADA:

• Interestingly, only larger models are
strongly affected by quantization
error.

[Dettmers et al., 2022]

Xint8 = round
127 Xfp16

max|Xfp16 |

Absolute maximum (absmax) quantization:

INT8 QUANTIZATION

39

• Dettmers et al., 2022, recognized that outliers are the issue.

• Larger models were more likely to contain weights/activations that have very
large magnitude.

• And these outliers were somehow important to the model’s functioning.

• They proposed to separate the rows/columns of matrices that contain
outliers.

• Perform arithmetic operations on the outliers in fp16 .

• Perform arithmetic operations on the other values in int8 .

• Combine the outputs and convert the result back into fp16 .

INT8 QUANTIZATION

40[Dettmers et al., 2022]

INT8 QUANTIZATION

41[Dettmers et al., 2022]

INT8 QUANTIZATION

42[Dettmers et al., 2022]

INT8 QUANTIZATION

43[Dettmers et al., 2022]

INT8 QUANTIZATION

44

• The conversion to and from fp16 /int8 requires additional overhead
computation.

• Models smaller than 6.7B parameters are slower due to this overhead.

• But this quantization approach enables running inference with 175B
parameter models on 80GB of VRAM.

• (there are single GPUs with this much memory)

• Or you can use 8 consumer GPUs (GeForce RTX 3090).

• Inference speed is doubled in comparison to fp16 inference.

MORE QUANTIZATION

45

• More recent quantization methods are able to further reduce the precision to
int4 , int3 , and int2 (!).

• For example, SpQR (Sparse-Quantized Representation; Dettmers et al., 2023),
not only considers outliers in the weight/activation matrices.

• They more directly consider the quantization error on real inputs.

• For each weight matrix W in the model,

• They use a small set of calibration inputs X to measure a sensitivity
parameter for each weight wij in W:

s ij = min
W′

WX − W′X 2
2

such that wij ’ = quantize(wij) and the other parameters of W’ are
unconstrained.

MORE QUANTIZATION

46

• They then specially consider weights in the matrix that are very sensitive to
quantization (i.e., they have very high s ij).

• They use higher precision to represent those weights, and lower precision for
all other weights.

• With this approach, they are able to quantize models into int3 and int2
(binary).

• Jin et al., 2024, evaluated SpQR along with other quantization methods on a
number of benchmarks.

• MMLU (Massive Multitask Language Understanding; Hendrycks et al.,
2021): Multiple-choice questions from broad set of categories.

• C-EVAL (Huang et al., 2023): Multiple-choice examples from Chinese
standardized exams.

MORE QUANTIZATION

47[Jin et al., 2024]

MORE QUANTIZATION

48[Jin et al., 2024]

TWO BROAD APPROACHES TO QUANTIZATION

49

• The methods described thusfar involve training a model with high precision
(or mixed precision) and then quantizing the model for inference afterwards.

• These approaches (including GPTQ and SpQR) are classified as post-training
quantization (PTQ) methods.

• Generally, while quantized models are evaluated on a handful of
benchmarks,

• Their abilities and generalization behavior, relative to the unquantized
model, are currently not well understood.

• What if we modified the training procedure to make the model more robust to
quantization?

• This other general approach is called quantization-aware training (QAT).

BINARIZED NEURAL NETWORKS

50

• One early approach to QAT is called binarized neural networks (Courbariaux
et al., 2016).

• All activations and weights are +1 or -1.

• Backprop is also discretized.

• They wrote a GPU kernel (“XNOR kernel”) to optimize binary matrix
multiplication.

• They tested their method by training a convolutional neural network on the
CIFAR-10 dataset.

BINARIZED NEURAL NETWORKS

51

• The dashed lines show the training loss.

• The solid lines show the test error rate.

[Courbariaux et al., 2016]

BINARIZED NEURAL NETWORKS

52

• Training is considerably slower with binarized neural networks,

• But the final accuracy is not significantly lower than the baseline.

[Courbariaux et al., 2016]

QUANTIZATION-AWARE TRAINING

53

• Liu and Oğuz (2023) propose an approach to first pretrain an unquantized
model.

• Next, initialize a quantized model from the first model’s weights.

• Generate many input examples and perform forward passes on the
unquantized models to obtain the logits for each example.

• Fine-tune the quantized model to minimize the difference between its
predicted logits and the logits from the unquantized model.

• QAT methods generally tend to be more computationally intensive.

• Thus, PTQ methods are more widely used today.

• But research is ongoing.

QLORA

54

• Quantization can be combined with parameter-efficient fine-tuning methods
such as LORA.

• In QLoRA (Dettmers et al., 2023), the model parameters are quantized to 4
bits.

QLORA

55

• They propose a new number format called NormalFloat which is specifically
designed to store normally-distributed values.

• The adapters are stored using bf16 .

[Dettmers et al., 2023]

QLORA

56

• They utilize “GPU memory paging” to move memory from GPU memory to
system memory and back to more gracefully handle spikes in GPU memory
usage.

• Enables fine-tuning a 65B parameter model on a single 48GB GPU.

[Dettmers et al., 2023]

QUANTIZATION SUMMARY

57

• We have discussed how to use quantization to speed up both inference and
training of large models,

• And to greatly reduce their memory footprints.

• For inference, we have looked at both post-training quantization (PTQ) and
quantization-aware training (QAT) approaches.

• Next time, we will continue looking into other model compression techniques.

• Distillation

• Can we use a large model to teach a smaller model?

• Is there an upper limit to the performance of the smaller model?

• Pruning

• Can we remove parts of the model and maintain accuracy?

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Previously: Working with Large Models
	Slide 3: Previously: Working with Large Models
	Slide 4: Previously: Working with Large Models
	Slide 5: Previously: Working with Large Models
	Slide 6: Previously: Working with Large Models
	Slide 7: Model Compression
	Slide 8: Model Compression
	Slide 9: Model Compression
	Slide 10: Quantization
	Slide 11: Quantization
	Slide 12: Quantization during Training
	Slide 13: Quantization during Training
	Slide 14: Quantization during Training
	Slide 15: Quantization during Training
	Slide 16: Quantization during Training
	Slide 17: Mixed Precision Training
	Slide 18: Mixed Precision Training
	Slide 19: Mixed Precision Training
	Slide 20: We don’t need 32-bits per parameter
	Slide 21: TF32
	Slide 22: Training with TF32 vs FP32
	Slide 23: Training with TF32 vs FP32
	Slide 24: Quantized Models are Faster
	Slide 25: Quantized Models are Faster
	Slide 26: Mixed Precision Training
	Slide 27: Mixed Precision Training
	Slide 28: Mixed Precision Training
	Slide 29: Mixed Precision Training
	Slide 30: Mixed Precision Training
	Slide 31: Mixed Precision Training
	Slide 32: Mixed Precision Training
	Slide 33: Mixed Precision Training
	Slide 34: Mixed Precision Training
	Slide 35: Even Smaller Number Formats
	Slide 36: Hardware Support for Quantization
	Slide 37: Hardware Support for Quantization
	Slide 38: Int8 Quantization
	Slide 39: Int8 Quantization
	Slide 40: Int8 Quantization
	Slide 41: Int8 Quantization
	Slide 42: Int8 Quantization
	Slide 43: Int8 Quantization
	Slide 44: Int8 Quantization
	Slide 45: More Quantization
	Slide 46: More Quantization
	Slide 47: More Quantization
	Slide 48: More Quantization
	Slide 49: Two Broad Approaches to Quantization
	Slide 50: Binarized Neural Networks
	Slide 51: Binarized Neural Networks
	Slide 52: Binarized Neural Networks
	Slide 53: Quantization-AWARE training
	Slide 54: QLORA
	Slide 55: QLORA
	Slide 56: QLoRA
	Slide 57: Quantization Summary
	Slide 58: Questions?

