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• Previously, we discussed how to train and run inference on models via 
parallelizing them across many GPUs.

• We also discussed how we can use large models even if we don’t have access 
to large GPU clusters.

• We looked into how to train models that are small enough for us to run 
inference (i.e., forward passes), but too large for us to fine-tune.

• Parameter-efficient fine-tuning (PEFT)
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• But what if the model is too large to fit in memory even for inference alone?

• Is there some way we can make the model smaller and retain accuracy?

• Or minimize any loss to accuracy?

• Smaller models would be much cheaper.

• Large models are expensive to train.

[Touvron et al., 2023]
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• tCO2eq is a unit meaning “metric tons of CO2 equivalent.”

• This table only considers the power requirements of GPUs, and not the cost of 
running the CPUs, interconnects, datacenter cooling, etc.

• This table also only considers the cost of training.

• For popular models, the cost of inference quickly outpaces the cost of 
training.

[Touvron et al., 2023]



PREVIOUSLY: WORKING WITH LARGE MODELS

5

• Future AI data centers and clusters are projected to continue using more and 
more power,

• And therefore, producing more and more greenhouse gases.

[Jafari et al., Projecting the Electricity Demand Growth of Generative AI Large Language Models in the US, 2024]
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• Effective model compression can potentially help to reduce the costs of 
training and inference.

• Compression can help to broaden access to large models.

• There are three broad categories of model compression techniques:

• Quantization: Reduce the precision of the floating-point numbers in the 
model.

• How can we reduce the precision without adversely affecting the 
model’s accuracy?

• It’s not so simple, especially with very low precision.

• Distillation: Use a larger model to train a small model.

• Pruning: Remove parts of the model while minimizing any adverse effects 
on model performance.
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• Why should we think it is even possible to compress models?

• Trained models may be overparameterized.

• I.e., they have more parameters than they need to learn a task.

• Du and Lee (2018) showed that:



MODEL COMPRESSION

9

• But there are some caveats to the findings of Du and Lee (2018):

• They only considered shallow networks.

• They assumed the loss function is convex.

• Loss functions for almost all large real-world models are not convex.

• Allen-Zhu et al. (2018) showed that if a network contains a subnetwork that 
is able to perform the target task,

• And there is sufficient available training data,

• Then the overparameterized network can learn the task without 
overfitting.

• So there is hope that large models might contain these smaller 
“subnetworks” that are able to perform tasks with similar accuracy.
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• The first model compression approach we will consider is quantization.

• We can reduce the size of the model by reducing the precision of each 
parameter.

• This floating-point number represents ( - 1) s⋅2e- 127⋅1. f

• Where s  is the sign, e is the exponent (also called range), and f  is the fraction 
(also called mantissa or precision) in binary.

[en.wikipedia.org/wiki/Bfloat16_floating-point_format]
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• There are smaller floating-point formats:

• bf16  or bfloat16  (“Brain float-16”; Google Brain, 2018) allocates more bits to 
the exponent (same number of bits as fp32 ) and fewer bits to the fraction.

• A wider range of numbers can be represented in bf16  compared to fp16 .

• At the expense of the precision.

[en.wikipedia.org/wiki/Bfloat16_floating-point_format]
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• Training is very sensitive to floating-point precision.

• Simply reducing the precision of all parameters from fp32  to fp16  leads to 
instability during training.

F16

[Narang et al., 2018]
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• Why do quantized models diverge during training?

• Inspect the gradients of the parameters during fp32  training, and plot a 
histogram of their magnitudes:

[Narang et al., 2018]
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• Possible reason for training instability when using fp16:

• Small gradients are important for training.

• When naively switching from fp32  to fp16 , they are rounded to zero.

[Narang et al., 2018]
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• Possible reason for training instability when using fp16:

• Small gradients are important for training.

• When naively switching from fp32  to fp16 , they are rounded to zero.

• This is especially problematic for larger models since they require a smaller 
learning rate for training.

• Is there a way we can avoid underflow?
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• What if we keep the weights in high precision (fp32 ) but perform and forward 
and backward pass in lower precision (fp16 )?

• But we still have the problem where the gradients computed in the backward 
pass will be rounded to zero.

• What if we scale the gradients by a constant factor?

  Wnew = W -  𝛾
𝜕L
𝜕W

         = W -
𝛾

S
𝜕

𝜕W
( SL )

• This is possible due to the linearity of the derivative operator.

• This has the effect of shifting the magnitude of the gradients further away 
from 0, where there is a much lower risk of underflow.
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• This approach is called mixed-precision training.

[Narang et al., 2018]
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• This approach is called mixed-precision training.

• With an appropriate value for S, it can perform very similar to full-precison 
training.

[Narang et al., 2018]
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• This approach is called mixed-precision training.

• With an appropriate value for S, it can perform very similar to full-precison 
training.

• We can reduce the memory requirement of training by almost half:

• Only the model parameters require high-precision.

• Everything else (the activations, gradients) can be stored in half precision.
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• Is there a middle-ground between fp32  and fp16  that would maintain 
stability during training?

• What if we used the same number of exponent bits as fp32  (8 bits) and the 
same number of fraction bits as fp16  (10 bits)?

[Kharya, TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x, 2020]
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• The proposed format is called TensorFloat-32 or tf32  (Nvidia, 2020).

• Note that only 19 bits are useful, and the remaining 13 bits are padding.

• So there are no memory savings as compared to fp32 , but arithmetic 
operations can be much faster.

[Kharya, TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x, 2020]
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• Experiments demonstrate that training/using models with tf32  is similar to 
fp32 .

• For example, training a Transformer-XL model:

[Stosic, Training Neural Networks with Tensor Cores, 2020]
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• Experiments demonstrate that training/using models with tf32  is similar to 
fp32 .

• For example, training ResNeXt101:

[Stosic, Training Neural Networks with Tensor Cores, 2020]
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• In addition to reducing memory footprint,

• Quantization can significantly improve the speed of model operations.

• E.g., on an P100 GPU:

• fp64  (“double ” in C/C++/Java): 5.3 TFLOPs/s

• fp32  (“float ” in C/C++/Java): 10.6 TFLOPs/s

• fp16 : 21.2 TFLOPs/s

[en.wikipedia.org/wiki/Hopper_(microarchitecture)]
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• In addition to reducing memory footprint,

• Quantization can significantly improve the speed of model operations.

• Newer GPUs have specialized hardware for reduced-precision arithmetic.

• E.g., on an H200 GPU:

• fp64  (“double ” in C/C++/Java): 34 TFLOPs/s

• fp32  (“float ” in C/C++/Java): 67 TFLOPs/s

• tf32 : 495 TFLOPs/s

• fp16 : 990 TFLOPs/s

• bfloat16 : 990 TFLOPs/s

• int8  (“char ” in C/C++, “byte ” in Java): 1980 TOPs/s

[en.wikipedia.org/wiki/Hopper_(microarchitecture)]
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• But mixed-precision training isn’t completely free of instability.

• Lee et al., 2024, attempted to train GPT-2 for 188 different random initial 
seed values.

• They used mixed-precision training with bf16  and tf32  formats.

• They found 18 of the 188 seeds diverged (about 5%).

• Some examples of diverged training runs:
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• But mixed-precision training isn’t completely free of instability.

• Lee et al., 2024, attempted to train GPT-2 for 188 different random initial 
seed values.

• They used mixed-precision training with bf16  and tf32  formats.

• They found 18 of the 188 seeds diverged (about 5%).

• However, they used early stopping to be able to experiment with a larger 
number seeds.

• So they estimate the true divergence rate is closer to 10% of seeds.
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• DeepSeek-AI, 2024, performs mixed-precision training where weights are 
stored in fp32  and matrix products are computed in fp8 .

• Only one matrix product is shown here (“Fprop” means forward pass).

Y = XA
where X is the input,

Y is the output,

and A are the weights.
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• DeepSeek-AI, 2024, performs mixed-precision training where weights are 
stored in fp32  and matrix products are computed in fp8 .

• Activations are in bf16  but are converted to fp8  for matrix multiplications.

Y = XA
where X is the input,

Y is the output,

and A are the weights.

Recall: In the backward pass, 

we need to compute
𝜕L
𝜕A = 

𝜕L
𝜕Y

𝜕Y
𝜕A = XT 𝜕L

𝜕Y   (“Wgrad”)

𝜕L
𝜕X = 

𝜕L
𝜕Y

𝜕Y
𝜕X = 

𝜕L
𝜕Y AT (“Dgrad”)
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• NVIDIA (2025) recently proposed a mixed-precision training method where 
weights are stored in fp32 and matrix products are computed in 4-bits.
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• They introduce a new 4-bit floating-point format called nvfp4 .
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• They introduce a new 4-bit floating-point format called nvfp4 .
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• Smaller floating-point layouts are possible:

• fp8  or float8 : 1 bit sign, 4 bit exponent, 3 bit fraction

• fp4  or float4 : 1 bit sign, 2 bit exponent, 1 bit fraction

• Numbers can be converted into integers:

• int8

• int4

• int3

• int2

• int1  (binary)
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• GPUs don’t support arbitrary floating-point or integer formats.

• We can imagine how fast int4  or fp4  operations would be, but most GPUs 
simply don’t provide hardware acceleration support.

• Many software frameworks still don’t support many small number formats.

• PyTorch does not currently support int3  or fp4  (as of March 2025),

• And has limited support for int4  and fp8 .

• When we perform arithmetic operations using these number formats on GPUs 
without hardware support, we first must convert them into a supported 
number format.
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• We can still use these smaller number formats, since they still provide 
reduced memory footprint.

• The speed of the operation will be the same as the supported number 
format.

• Number formats smaller than fp16  cause too much instability during 
training,

• But inference is much more robust to quantization.

• Thus smaller number formats are currently only used for inference.

• Let’s see how to quantize models into these smaller formats for inference.
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• int8  operations are significantly faster 
than floating-point for GPUs that provide 
acceleration support.

• But naïvely quantizing the 
weights/activations of a trained model 
leads to significant approximation errors.

• For example, if we evaluate OPT on a 
wide range of datasets: WinoGrande, 
HellaSwag, PIQA, and LAMBADA:

• Interestingly, only larger models are 
strongly affected by quantization 
error.

[Dettmers et al., 2022]

Xint8  = round
127 Xfp16

max|Xfp16 |

Absolute maximum (absmax) quantization:
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• Dettmers et al., 2022, recognized that outliers are the issue.

• Larger models were more likely to contain weights/activations that have very 
large magnitude.

• And these outliers were somehow important to the model’s functioning.

• They proposed to separate the rows/columns of matrices that contain 
outliers.

• Perform arithmetic operations on the outliers in fp16 .

• Perform arithmetic operations on the other values in int8 .

• Combine the outputs and convert the result back into fp16 .
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• The conversion to and from fp16 /int8  requires additional overhead 
computation.

• Models smaller than 6.7B parameters are slower due to this overhead.

• But this quantization approach enables running inference with 175B 
parameter models on 80GB of VRAM.

• (there are single GPUs with this much memory)

• Or you can use 8 consumer GPUs (GeForce RTX 3090).

• Inference speed is doubled in comparison to fp16  inference.
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• More recent quantization methods are able to further reduce the precision to 
int4 , int3 , and int2  (!).

• For example, SpQR (Sparse-Quantized Representation; Dettmers et al., 2023), 
not only considers outliers in the weight/activation matrices.

• They more directly consider the quantization error on real inputs.

• For each weight matrix W in the model,

• They use a small set of calibration inputs X to measure a sensitivity 
parameter for each weight wij  in W:

s ij  = min
W′

WX − W′X 2
2

such that wij ’ = quantize(wij ) and the other parameters of W’ are 
unconstrained.
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• They then specially consider weights in the matrix that are very sensitive to 
quantization (i.e., they have very high s ij ).

• They use higher precision to represent those weights, and lower precision for 
all other weights.

• With this approach, they are able to quantize models into int3  and int2  
(binary).

• Jin et al., 2024, evaluated SpQR along with other quantization methods on a 
number of benchmarks.

• MMLU (Massive Multitask Language Understanding; Hendrycks et al., 
2021): Multiple-choice questions from broad set of categories.

• C-EVAL (Huang et al., 2023): Multiple-choice examples from Chinese 
standardized exams.
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• The methods described thusfar involve training a model with high precision 
(or mixed precision) and then quantizing the model for inference afterwards.

• These approaches (including GPTQ and SpQR) are classified as post-training 
quantization (PTQ) methods.

• Generally, while quantized models are evaluated on a handful of 
benchmarks,

• Their abilities and generalization behavior, relative to the unquantized 
model, are currently not well understood.

• What if we modified the training procedure to make the model more robust to 
quantization?

• This other general approach is called quantization-aware training (QAT).
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• One early approach to QAT is called binarized neural networks (Courbariaux 
et al., 2016).

• All activations and weights are +1 or -1.

• Backprop is also discretized.

• They wrote a GPU kernel (“XNOR kernel”) to optimize binary matrix 
multiplication.

• They tested their method by training a convolutional neural network on the 
CIFAR-10 dataset.
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• The dashed lines show the training loss.

• The solid lines show the test error rate.

[Courbariaux et al., 2016]



BINARIZED NEURAL NETWORKS

52

• Training is considerably slower with binarized neural networks,

• But the final accuracy is not significantly lower than the baseline.

[Courbariaux et al., 2016]
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• Liu and Oğuz (2023) propose an approach to first pretrain an unquantized 
model.

• Next, initialize a quantized model from the first model’s weights.

• Generate many input examples and perform forward passes on the 
unquantized models to obtain the logits for each example.

• Fine-tune the quantized model to minimize the difference between its 
predicted logits and the logits from the unquantized model.

• QAT methods generally tend to be more computationally intensive.

• Thus, PTQ methods are more widely used today.

• But research is ongoing.
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• Quantization can be combined with parameter-efficient fine-tuning methods 
such as LORA.

• In QLoRA (Dettmers et al., 2023), the model parameters are quantized to 4 
bits.



QLORA

55

• They propose a new number format called NormalFloat  which is specifically 
designed to store normally-distributed values.

• The adapters are stored using bf16 .

[Dettmers et al., 2023]
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• They utilize “GPU memory paging” to move memory from GPU memory to 
system memory and back to more gracefully handle spikes in GPU memory 
usage.

• Enables fine-tuning a 65B parameter model on a single 48GB GPU.

[Dettmers et al., 2023]
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• We have discussed how to use quantization to speed up both inference and 
training of large models,

• And to greatly reduce their memory footprints.

• For inference, we have looked at both post-training quantization (PTQ) and 
quantization-aware training (QAT) approaches.

• Next time, we will continue looking into other model compression techniques.

• Distillation

• Can we use a large model to teach a smaller model?

• Is there an upper limit to the performance of the smaller model?

• Pruning

• Can we remove parts of the model and maintain accuracy?



QUESTIONS?
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