

CS 577: NATURAL LANGUAGE PROCESSING

Abulhair Saparov

Lecture 15: Quantization

PREVIOUSLY: WORKING WITH LARGE MODELS

- Previously, we discussed how to train and run inference on models via parallelizing them across many GPUs.
- We also discussed how we can use large models even if we don't have access to large GPU clusters.
 - We looked into how to train models that are small enough for us to run inference (i.e., forward passes), but too large for us to fine-tune.
 - **Parameter-efficient fine-tuning (PEFT)**

PREVIOUSLY: WORKING WITH LARGE MODELS

- But what if the model is too large to fit in memory even for inference alone?
- Is there some way we can make the model smaller and retain accuracy?
 - Or minimize any loss to accuracy?
- Smaller models would be much cheaper.
 - Large models are expensive to train.

	Time (GPU hours)	Power Consumption (W)	Carbon Emitted (tCO ₂ eq)
LLAMA 2	7B	184320	31.22
	13B	368640	62.44
	34B	1038336	153.90
	70B	1720320	291.42
Total	3311616		539.00

PREVIOUSLY: WORKING WITH LARGE MODELS

- $t\text{CO}_2\text{eq}$ is a unit meaning “metric tons of CO_2 equivalent.”
- This table only considers the power requirements of GPUs, and not the cost of running the CPUs, interconnects, datacenter cooling, etc.
- This table also only considers the cost of training.
 - For popular models, the cost of inference quickly outpaces the cost of training.

	Time (GPU hours)	Power Consumption (W)	Carbon Emitted ($t\text{CO}_2\text{eq}$)
LLAMA 2	7B	184320	31.22
	13B	368640	62.44
	34B	1038336	153.90
	70B	1720320	291.42
Total	3311616		539.00

PREVIOUSLY: WORKING WITH LARGE MODELS

- Future AI data centers and clusters are projected to continue using more and more power,
- And therefore, producing more and more greenhouse gases.

Figure 1a: AI LLM data center share of total summer generating capacity

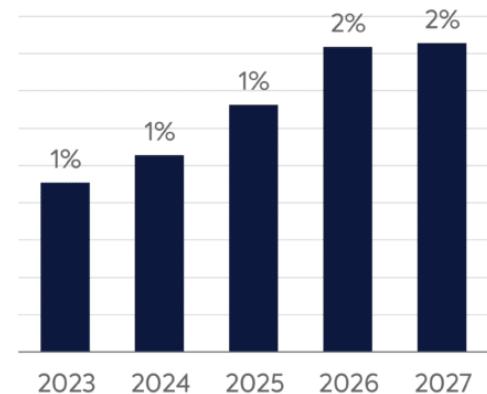
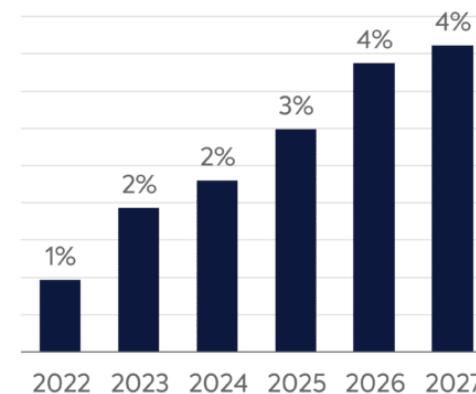


Figure 1b: AI LLM data center share of total energy sales



Source: Data derived from the EIA's Annual Energy Outlook 2023 and the authors' AI LLM demand projections.

PREVIOUSLY: WORKING WITH

- Future AI data centers and clusters are projected to require more power,

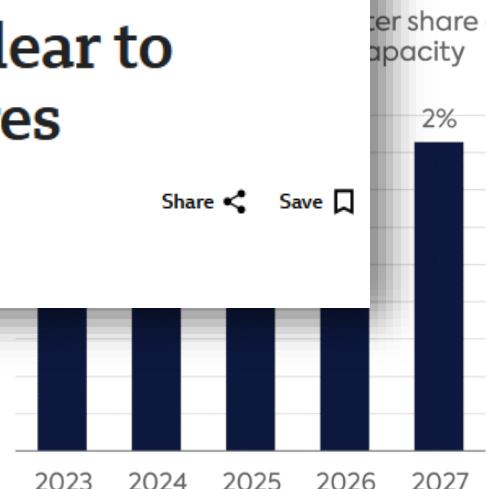
 [Watch](#) [Register](#) [Sign In](#)

Google turns to nuclear to power AI data centres

15 October 2024

João da Silva
Business reporter

Estimated share of capacity

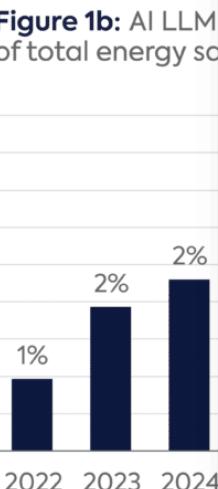


Year	Estimated Share of Capacity
2023	1%
2024	1%
2025	1%
2026	1%
2027	2%

Source: Data derived from the EIA's Annual Energy Outlook 2023 LLM demand projections.

[Share](#) [Save](#)

Figure 1b: AI LLM demand projections



Year	Estimated Share of Total Energy Sales
2022	1%
2023	2%
2024	2%

The New York Times

A.I. Could Soon Need as Much Electricity as an Entire Country

Behind the scenes, the technology relies on thousands of specialized computer chips.

[Share full article](#) [Email](#) [Bookmark](#)

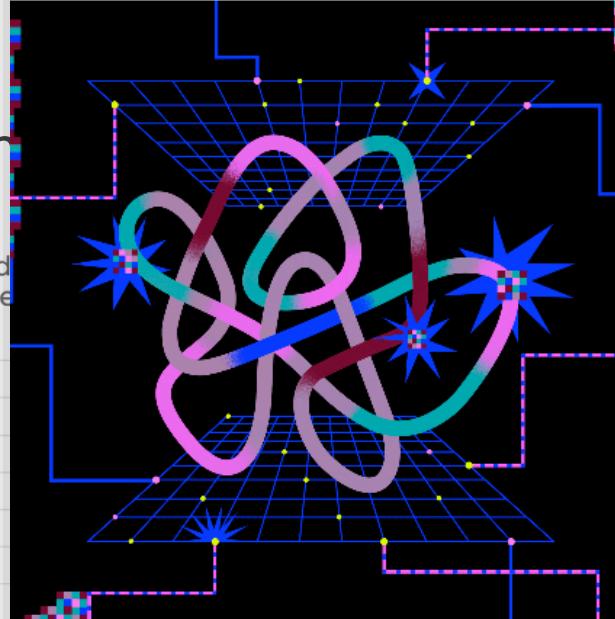


Figure 1b: AI LLM demand projections

Kasia Bojanowska

By [Delger Erdenesanaa](#)

Published Oct. 10, 2023 Updated Aug. 23, 2024

MODEL COMPRESSION

- Effective model compression can potentially help to reduce the costs of training and inference.
- Compression can help to broaden access to large models.
- There are three broad categories of model compression techniques:
 - **Quantization**: Reduce the precision of the floating-point numbers in the model.
 - How can we reduce the precision without adversely affecting the model's accuracy?
 - It's not so simple, especially with very low precision.
 - **Distillation**: Use a larger model to train a small model.
 - **Pruning**: Remove parts of the model while minimizing any adverse effects on model performance.

MODEL COMPRESSION

- Why should we think it is even possible to compress models?
- Trained models may be **overparameterized**.
 - I.e., they have more parameters than they need to learn a task.
- Du and Lee (2018) showed that:

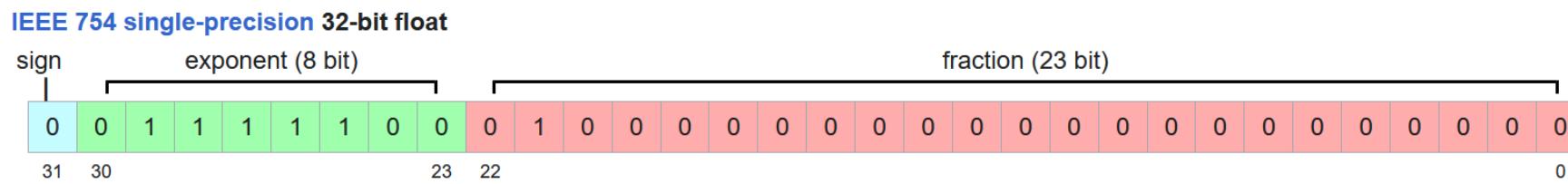
For a k hidden node shallow network with quadratic activation and n training data points, we show as long as $k \geq \sqrt{2n}$, over-parametrization enables local search algorithms to find a *globally* optimal solution for general smooth and convex loss functions.

MODEL COMPRESSION

- But there are some caveats to the findings of Du and Lee (2018):
 - They only considered shallow networks.
 - They assumed the loss function is convex.
 - Loss functions for almost all large real-world models are not convex.
- Allen-Zhu et al. (2018) showed that if a network contains a subnetwork that is able to perform the target task,
 - And there is sufficient available training data,
 - Then the overparameterized network can learn the task without overfitting.
- So there is hope that large models might contain these smaller “subnetworks” that are able to perform tasks with similar accuracy.

QUANTIZATION

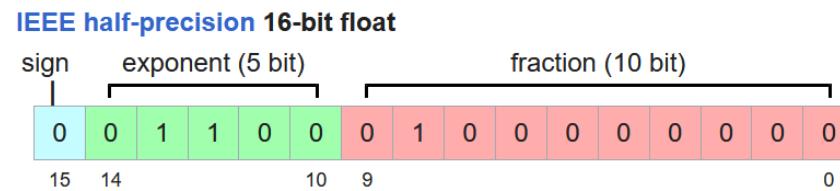
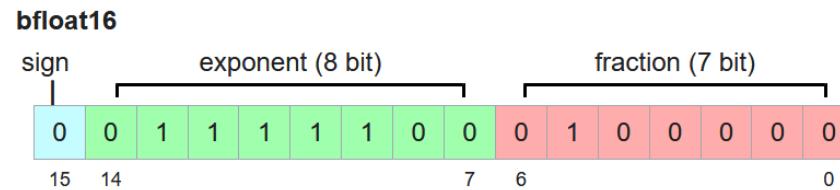
- The first model compression approach we will consider is **quantization**.
- We can reduce the size of the model by reducing the precision of each parameter.



- This floating-point number represents $(-1)^s \cdot 2^{e-127} \cdot 1.f$
- Where s is the sign, e is the exponent (also called range), and f is the fraction (also called mantissa or precision) in binary.

QUANTIZATION

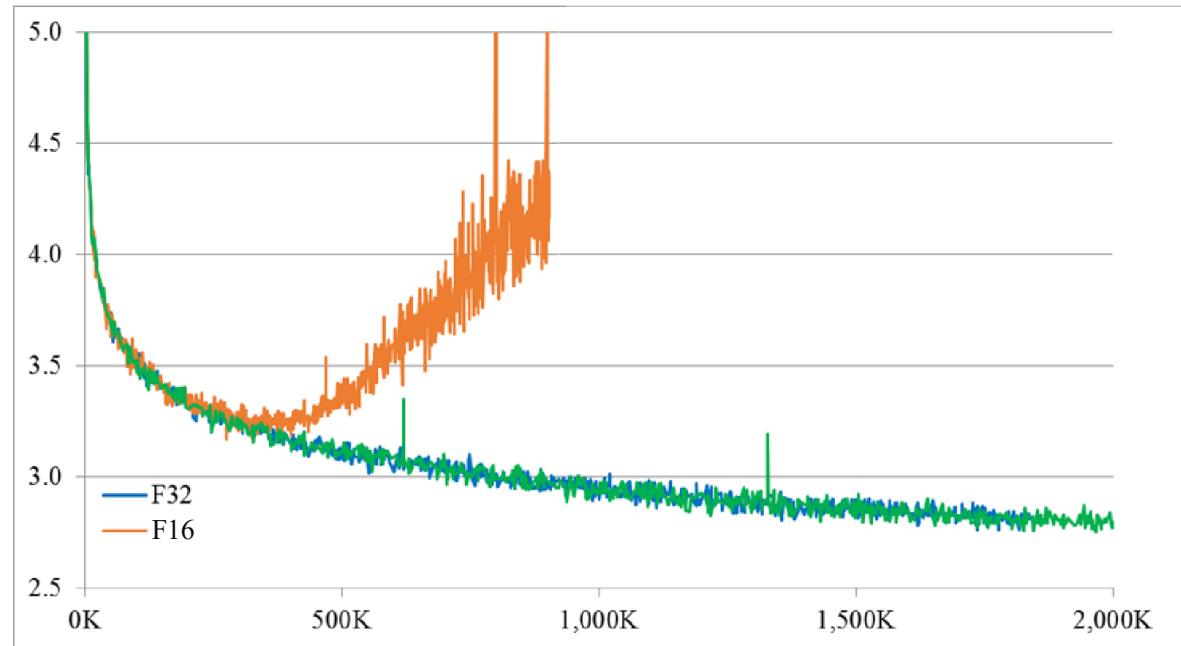
- There are smaller floating-point formats:



- **bf16** or bfloat16 (“Brain float-16”; Google Brain, 2018) allocates more bits to the exponent (same number of bits as fp32) and fewer bits to the fraction.
 - A wider range of numbers can be represented in **bf16** compared to **fp16**.
 - At the expense of the precision.

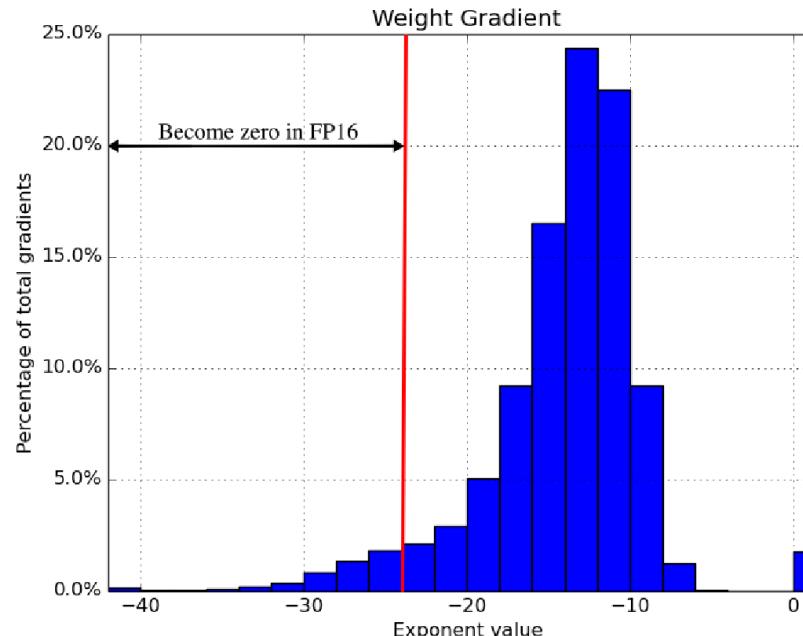
QUANTIZATION DURING TRAINING

- Training is very sensitive to floating-point precision.
- Simply reducing the precision of all parameters from fp32 to fp16 leads to **instability** during training.



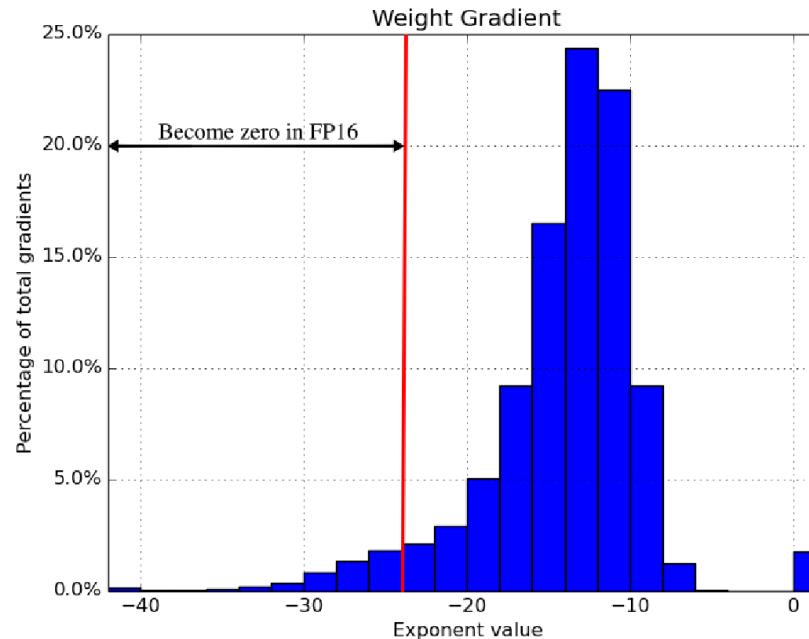
QUANTIZATION DURING TRAINING

- Why do quantized models diverge during training?
- Inspect the gradients of the parameters during fp32 training, and plot a histogram of their magnitudes:



QUANTIZATION DURING TRAINING

- Possible reason for training instability when using fp16:
 - Small gradients are important for training.
 - When naively switching from fp32 to fp16, they are rounded to zero.



QUANTIZATION DURING TRAINING

- Possible reason for training instability when using fp16:
 - Small gradients are important for training.
 - When naively switching from fp32 to fp16, they are rounded to zero.
- This is especially problematic for larger models since they require a smaller learning rate for training.
- Is there a way we can avoid underflow?

QUANTIZATION DURING TRAINING

- What if we keep the weights in high precision (fp32) but perform forward and backward pass in lower precision (fp16)?
- But we still have the problem where the gradients computed in the backward pass will be rounded to zero.
- What if we scale the gradients by a constant factor?

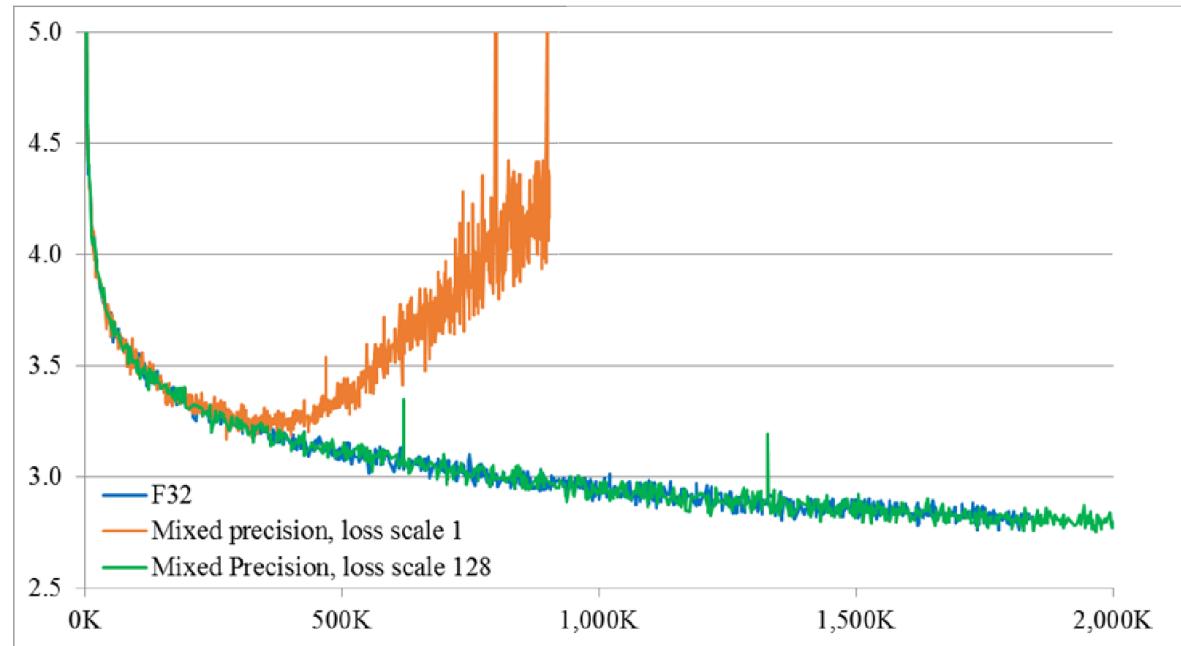
$$\begin{aligned} W_{new} &= W - \gamma \frac{\partial L}{\partial W} \\ &= W - \frac{\gamma}{S} \frac{\partial}{\partial W} (SL) \end{aligned}$$

We compute the red portion in
fp16 before converting to fp32.

- This is possible due to the linearity of the derivative operator.
- This has the effect of shifting the magnitude of the gradients further away from 0, where there is a much lower risk of underflow.

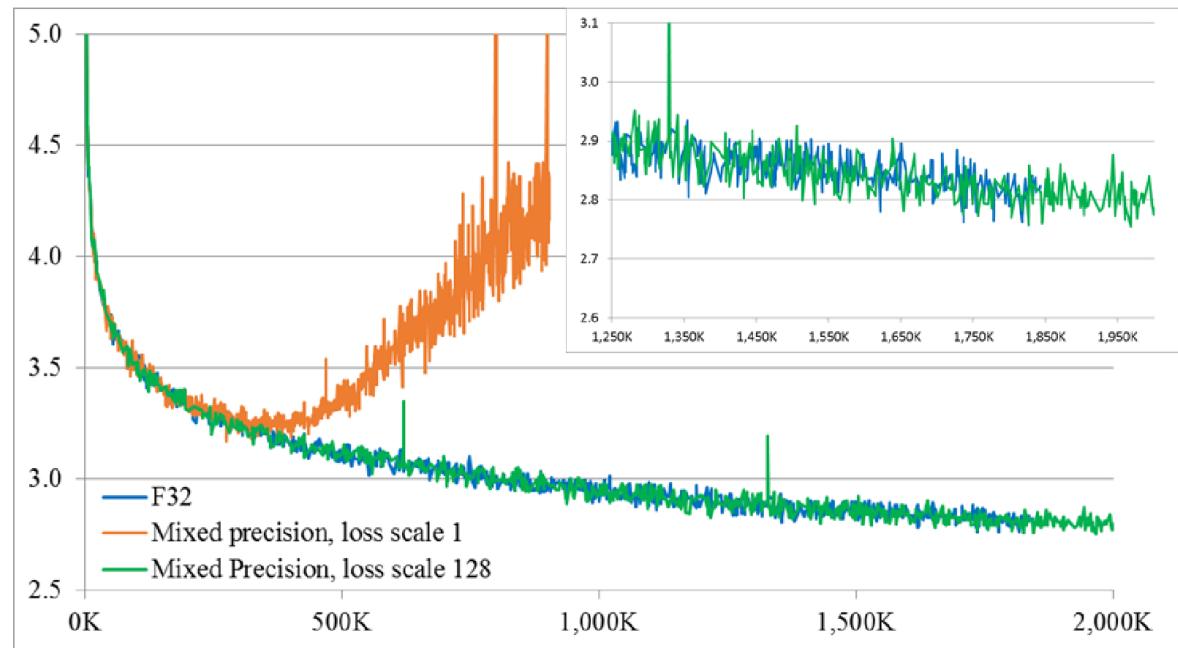
MIXED PRECISION TRAINING

- This approach is called mixed-precision training.



MIXED PRECISION TRAINING

- This approach is called mixed-precision training.
- With an appropriate value for S , it can perform very similar to full-precision training.

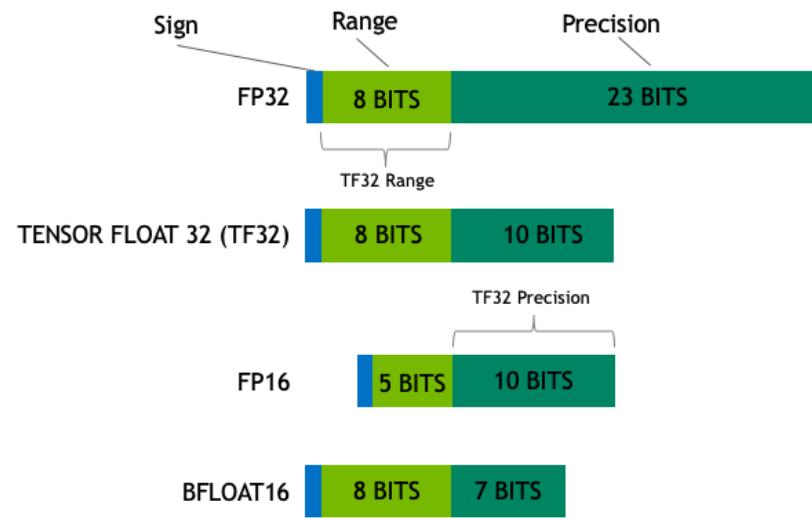


MIXED PRECISION TRAINING

- This approach is called mixed-precision training.
- With an appropriate value for S , it can perform very similar to full-precision training.
- We can reduce the memory requirement of training by *almost half*:
 - Only the model parameters require high-precision.
 - Everything else (the activations, gradients) can be stored in half precision.

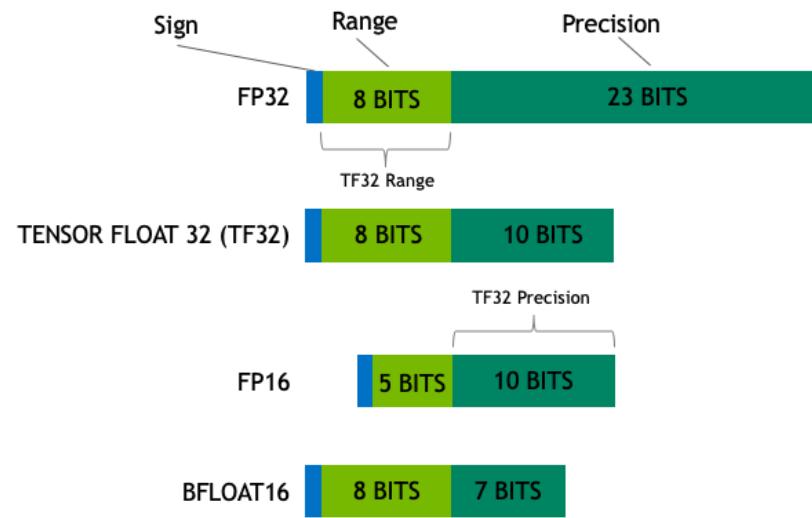
WE DON'T NEED 32-BITS PER PARAMETER

- Is there a middle-ground between fp32 and fp16 that would maintain stability during training?
- What if we used the same number of exponent bits as fp32 (8 bits) and the same number of fraction bits as fp16 (10 bits)?



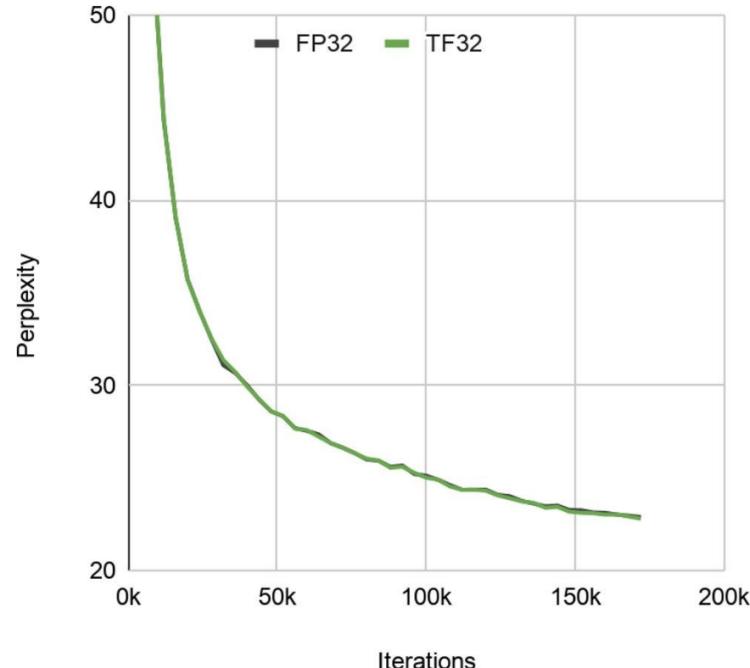
TF32

- The proposed format is called TensorFloat-32 or tf32 (Nvidia, 2020).
- Note that only 19 bits are useful, and the remaining 13 bits are padding.
- So there are no memory savings as compared to fp32, but arithmetic operations can be much faster.



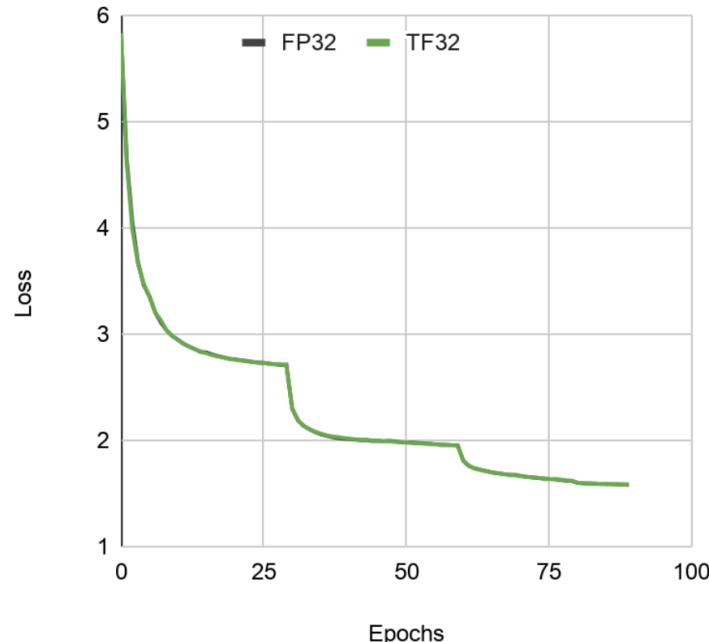
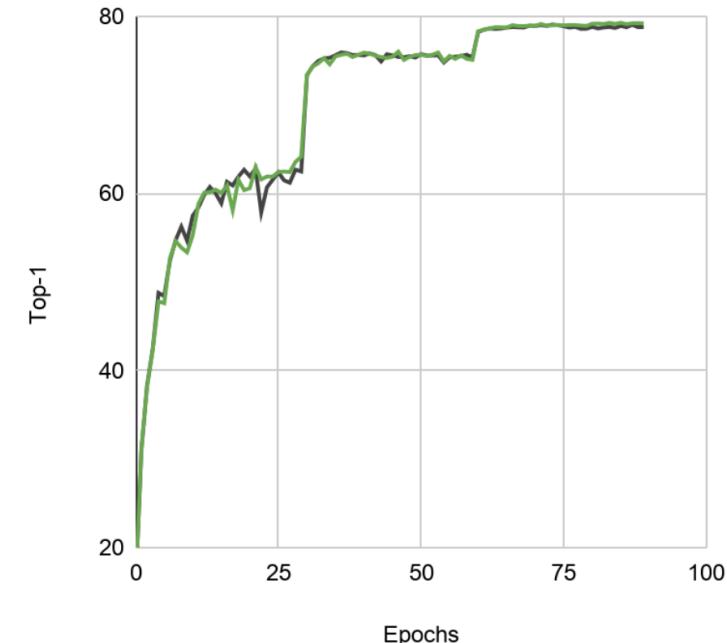
TRAINING WITH TF32 VS FP32

- Experiments demonstrate that training/using models with tf32 is similar to fp32.
- For example, training a Transformer-XL model:



TRAINING WITH TF32 VS FP32

- Experiments demonstrate that training/using models with tf32 is similar to fp32.
- For example, training ResNeXt101:



QUANTIZED MODELS ARE FASTER

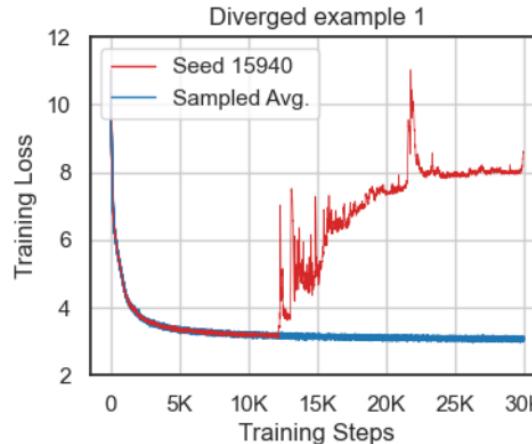
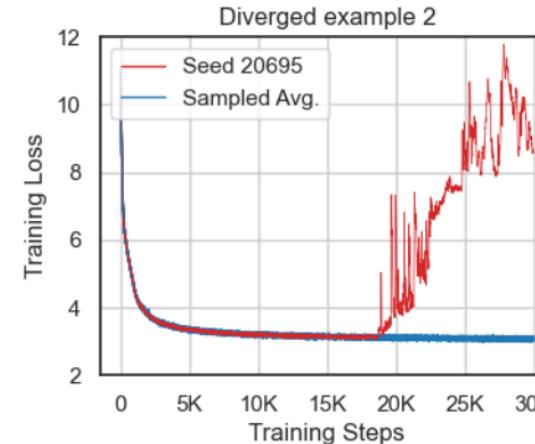
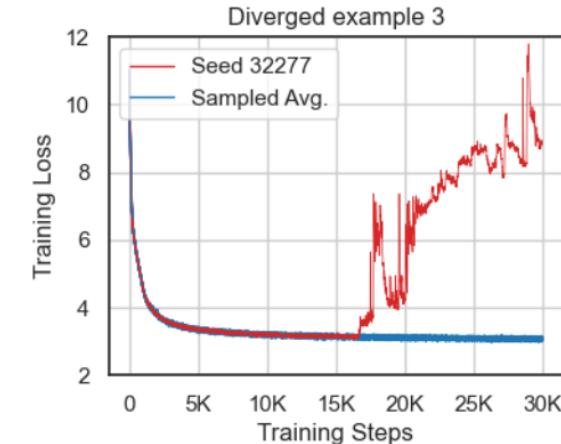
- In addition to reducing memory footprint,
- Quantization can significantly improve the speed of model operations.
- E.g., on an P100 GPU:
 - `fp64` (“double” in C/C++/Java): 5.3 TFLOPs/s
 - `fp32` (“float” in C/C++/Java): 10.6 TFLOPs/s
 - `fp16`: 21.2 TFLOPs/s

QUANTIZED MODELS ARE FASTER

- In addition to reducing memory footprint,
- Quantization can significantly improve the speed of model operations.
- Newer GPUs have specialized hardware for reduced-precision arithmetic.
- E.g., on an H200 GPU:
 - `fp64` (“double” in C/C++/Java): 34 TFLOPs/s
 - `fp32` (“float” in C/C++/Java): 67 TFLOPs/s
 - `tf32`: 495 TFLOPs/s
 - `fp16`: 990 TFLOPs/s
 - `bfloat16`: 990 TFLOPs/s
 - `int8` (“char” in C/C++, “byte” in Java): 1980 TOPs/s

MIXED PRECISION TRAINING

- But mixed-precision training isn't completely free of instability.
- Lee et al., 2024, attempted to train GPT-2 for 188 different random initial seed values.
 - They used mixed-precision training with bf16 and tf32 formats.
 - They found 18 of the 188 seeds diverged (about 5%).
 - Some examples of diverged training runs:

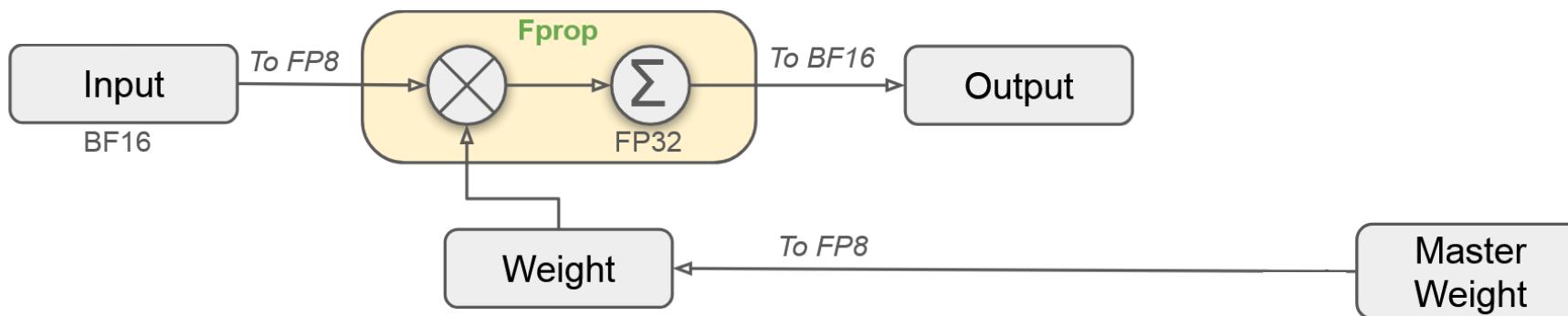


MIXED PRECISION TRAINING

- But mixed-precision training isn't completely free of instability.
- Lee et al., 2024, attempted to train GPT-2 for 188 different random initial seed values.
 - They used mixed-precision training with bf16 and tf32 formats.
 - They found 18 of the 188 seeds diverged (about 5%).
 - However, they used early stopping to be able to experiment with a larger number seeds.
 - So they estimate the true divergence rate is closer to 10% of seeds.

MIXED PRECISION TRAINING

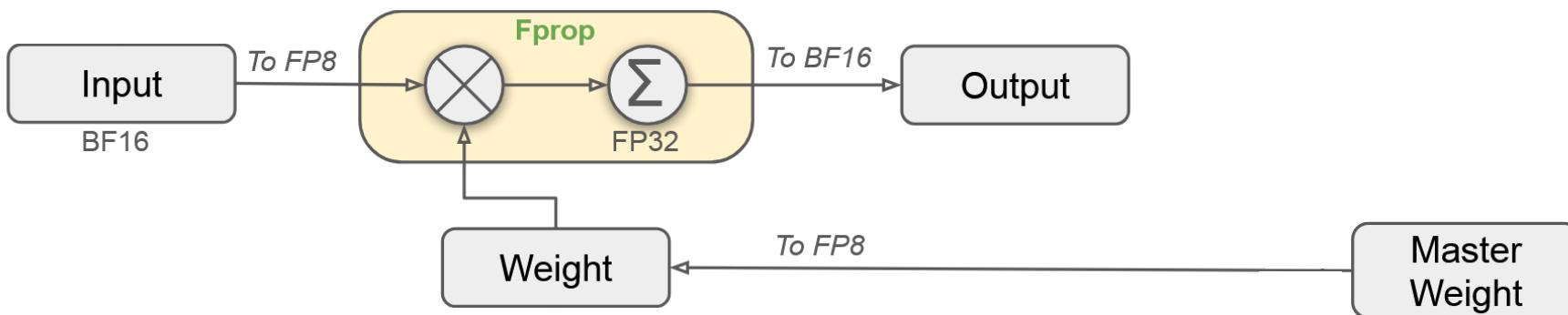
- DeepSeek-AI, 2024, performs mixed-precision training where weights are stored in fp32 and matrix products are computed in fp8.
- Only one matrix product is shown here (“Fprop” means forward pass).



$Y = XA$
where X is the input,
 Y is the output,
and A are the weights.

MIXED PRECISION TRAINING

- DeepSeek-AI, 2024, performs mixed-precision training where weights are stored in fp32 and matrix products are computed in fp8.
- Activations are in bf16 but are converted to fp8 for matrix multiplications.



$Y = XA$
where X is the input,
 Y is the output,
and A are the weights.

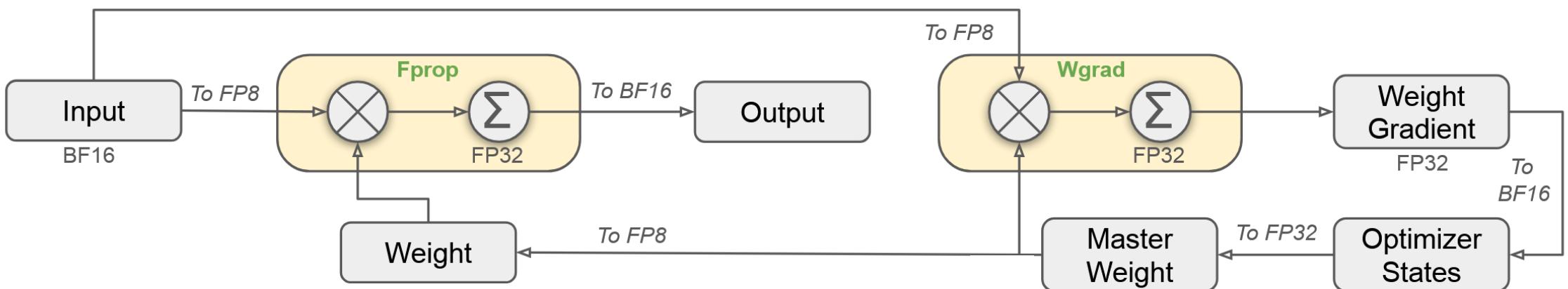
Recall: In the backward pass,
we need to compute

$$\frac{\partial L}{\partial A} = \frac{\partial L}{\partial Y} \frac{\partial Y}{\partial A} = X^T \frac{\partial L}{\partial Y} \quad (\text{"Wgrad"})$$

$$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial Y} \frac{\partial Y}{\partial X} = \frac{\partial L}{\partial Y} A^T \quad (\text{"Dgrad"})$$

MIXED PRECISION TRAINING

- DeepSeek-AI, 2024, performs mixed-precision training where weights are stored in fp32 and matrix products are computed in fp8.



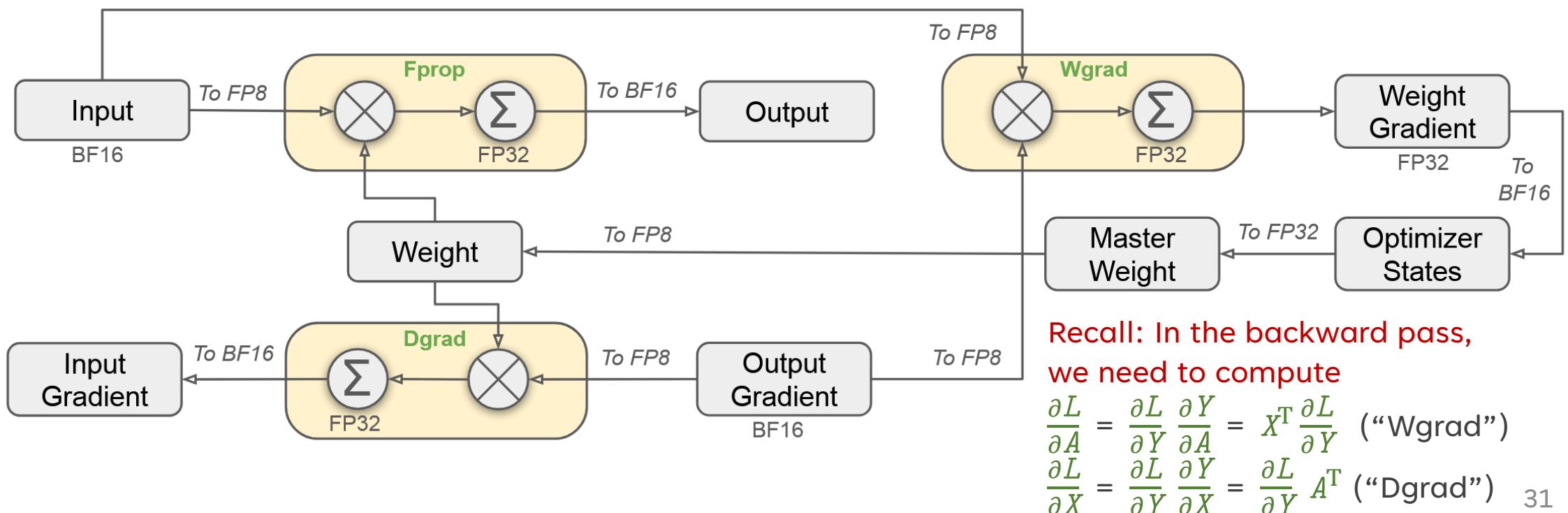
Recall: In the backward pass,
we need to compute

$$\frac{\partial L}{\partial A} = \frac{\partial L}{\partial Y} \frac{\partial Y}{\partial A} = X^T \frac{\partial L}{\partial Y} \quad (\text{"Wgrad"})$$

$$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial Y} \frac{\partial Y}{\partial X} = \frac{\partial L}{\partial Y} A^T \quad (\text{"Dgrad"})$$

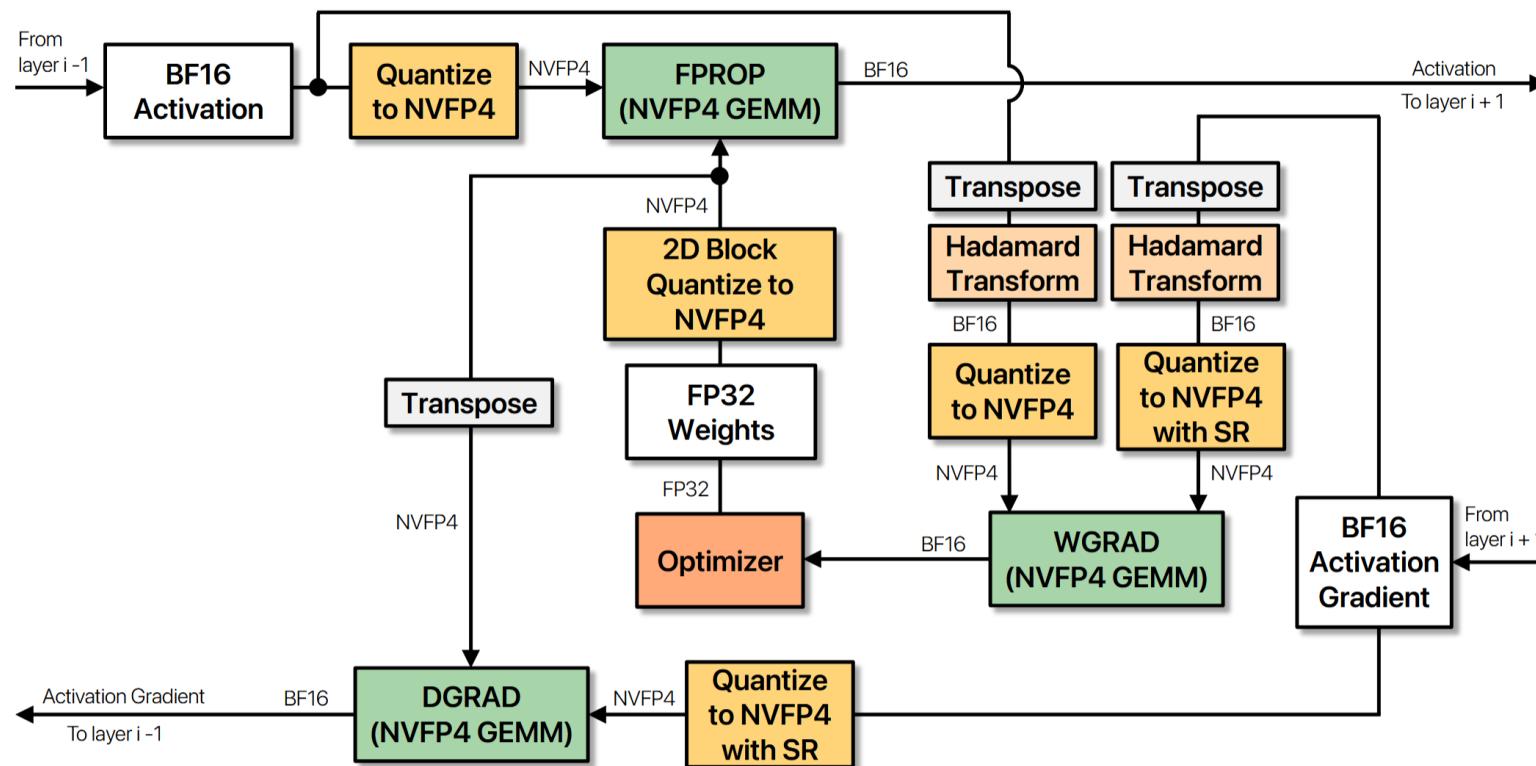
MIXED PRECISION TRAINING

- DeepSeek-AI, 2024, performs mixed-precision training where weights are stored in fp32 and matrix products are computed in fp8.



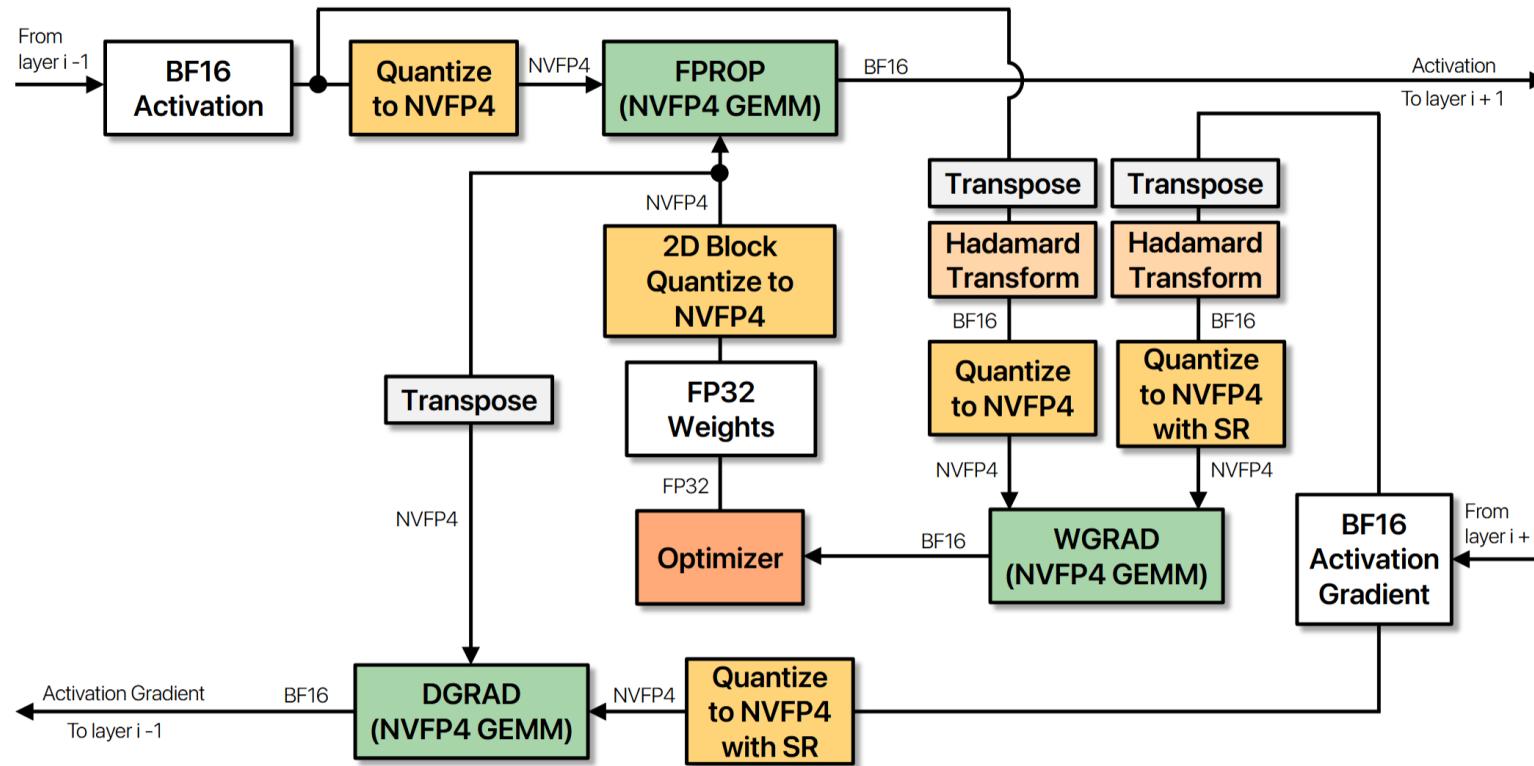
MIXED PRECISION TRAINING

- NVIDIA (2025) recently proposed a mixed-precision training method where weights are stored in fp32 and matrix products are computed in 4-bits.



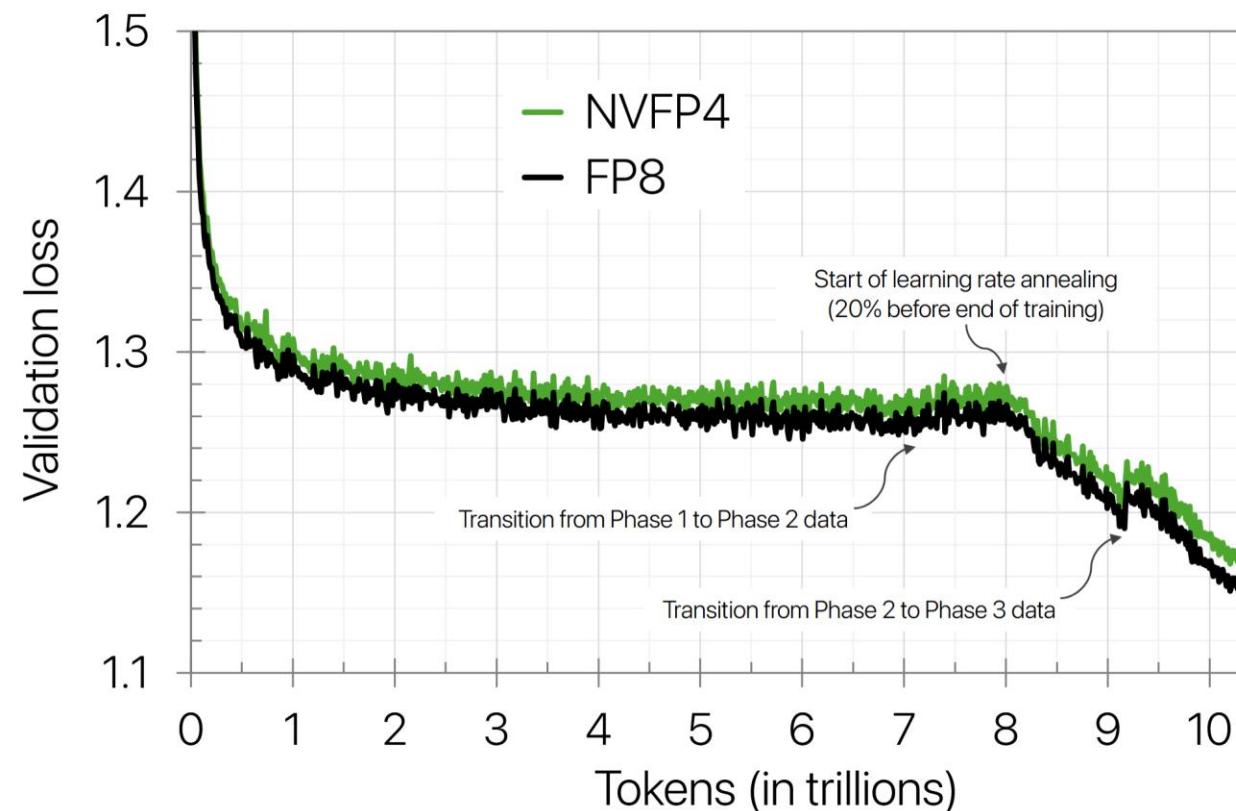
MIXED PRECISION TRAINING

- They introduce a new 4-bit floating-point format called nvfp4.



MIXED PRECISION TRAINING

- They introduce a new 4-bit floating-point format called nvfp4.



EVEN SMALLER NUMBER FORMATS

- Smaller floating-point layouts are possible:
 - fp8 or float8: 1 bit sign, 4 bit exponent, 3 bit fraction
 - fp4 or float4: 1 bit sign, 2 bit exponent, 1 bit fraction
- Numbers can be converted into integers:
 - int8
 - int4
 - int3
 - int2
 - int1 (binary)

HARDWARE SUPPORT FOR QUANTIZATION

- GPUs don't support arbitrary floating-point or integer formats.
- We can imagine how fast int4 or fp4 operations would be, but most GPUs simply don't provide hardware acceleration support.
- Many software frameworks still don't support many small number formats.
 - PyTorch does not currently support int3 or fp4 (as of March 2025),
 - And has limited support for int4 and fp8.
- When we perform arithmetic operations using these number formats on GPUs without hardware support, we first must convert them into a supported number format.

HARDWARE SUPPORT FOR QUANTIZATION

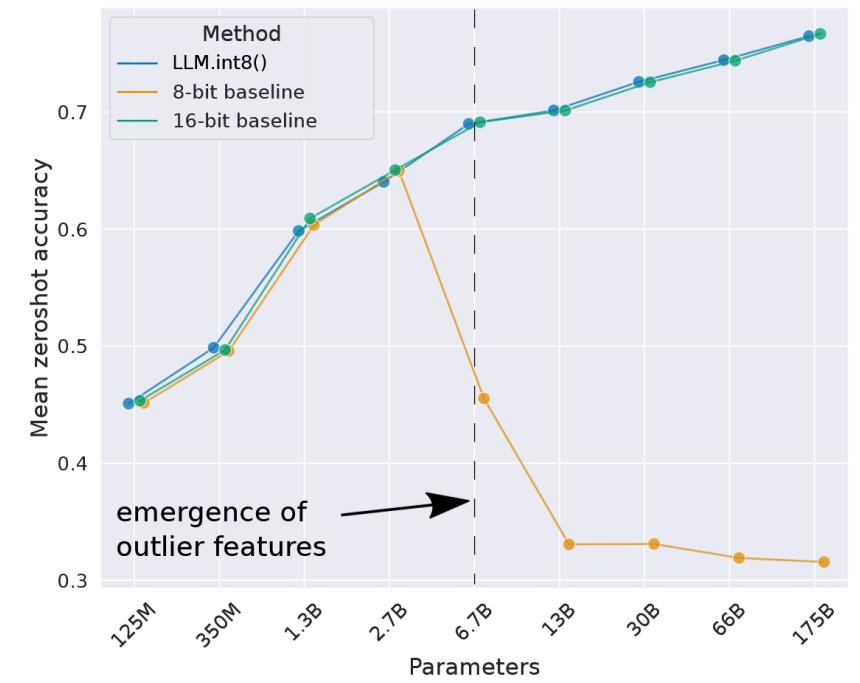
- We can still use these smaller number formats, since they still provide reduced memory footprint.
 - The speed of the operation will be the same as the supported number format.
 - Number formats smaller than fp16 cause too much instability during training,
 - But inference is much more robust to quantization.
 - Thus smaller number formats are currently only used for inference.
- Let's see how to quantize models into these smaller formats for inference.

INT8 QUANTIZATION

- int8 operations are significantly faster than floating-point for GPUs that provide acceleration support.
- But naïvely quantizing the weights/activations of a trained model leads to significant approximation errors.
- For example, if we evaluate OPT on a wide range of datasets: Winogrande, HellaSwag, PIQA, and LAMBADA:
 - Interestingly, only larger models are strongly affected by quantization error.

Absolute maximum (absmax) quantization:

$$X_{\text{int8}} = \text{round}\left(\frac{127 X_{\text{fp16}}}{\max |X_{\text{fp16}}|}\right)$$



INT8 QUANTIZATION

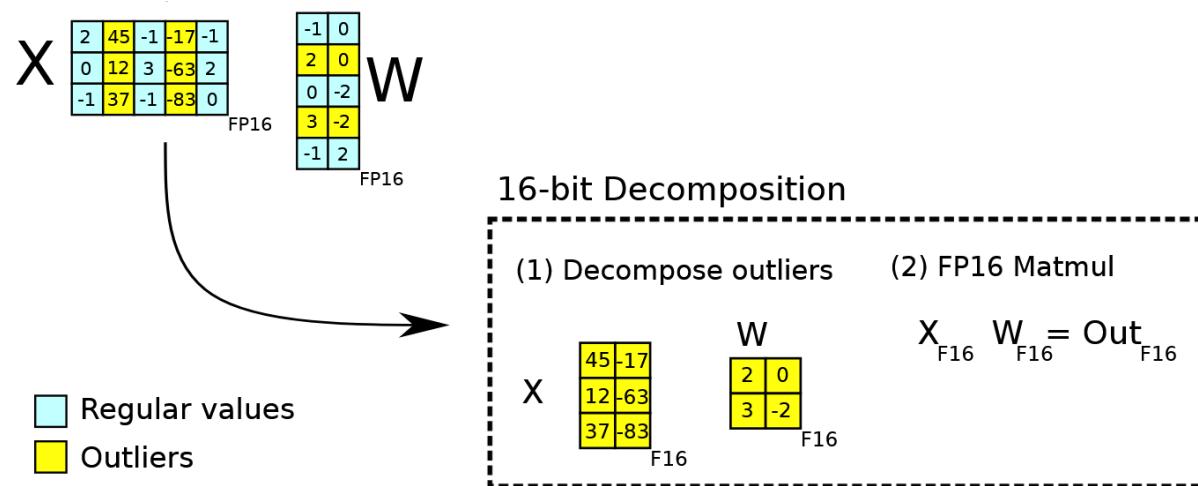
- Dettmers et al., 2022, recognized that outliers are the issue.
- Larger models were more likely to contain weights/activations that have very large magnitude.
 - And these outliers were somehow important to the model's functioning.
- They proposed to separate the rows/columns of matrices that contain outliers.
 - Perform arithmetic operations on the outliers in fp16.
 - Perform arithmetic operations on the other values in int8.
 - Combine the outputs and convert the result back into fp16.

INT8 QUANTIZATION

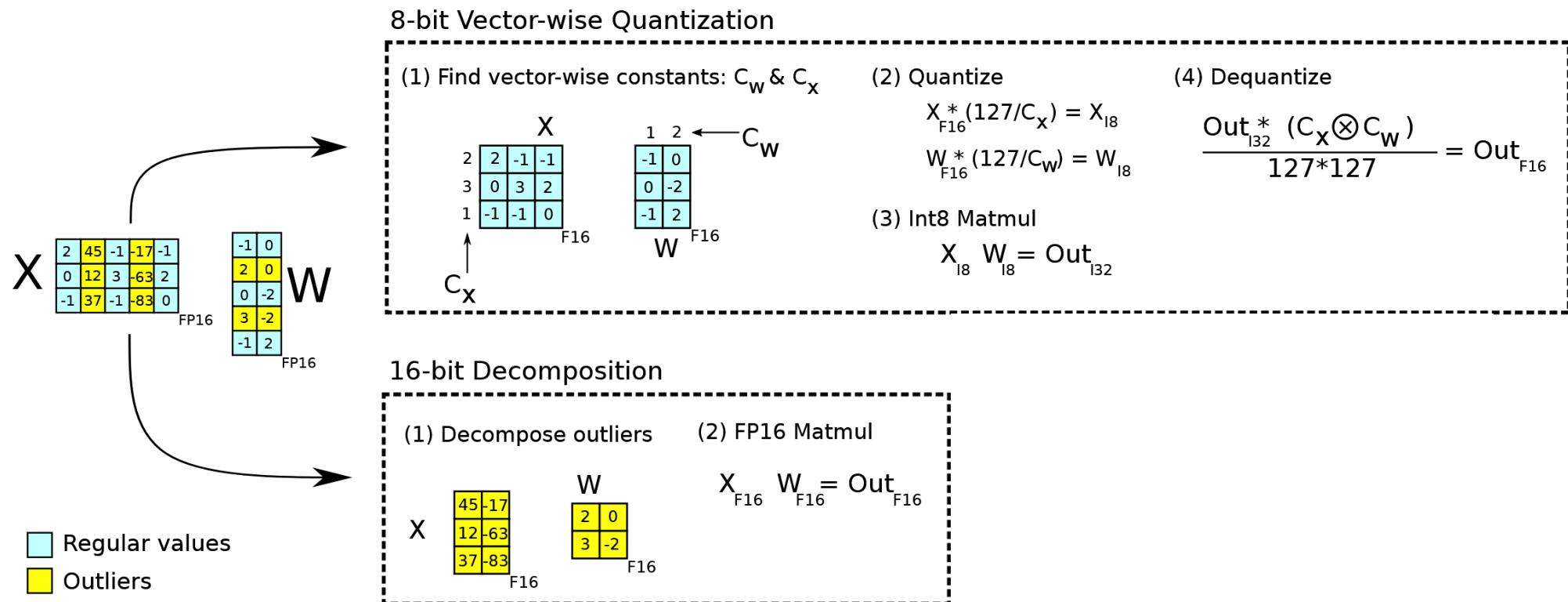
$$X \begin{bmatrix} 2 & 45 & -1 & -17 & -1 \\ 0 & 12 & 3 & -63 & 2 \\ -1 & 37 & -1 & -83 & 0 \end{bmatrix}_{\text{FP16}} \quad W \begin{bmatrix} -1 & 0 \\ 2 & 0 \\ 0 & -2 \\ 3 & -2 \\ -1 & 2 \end{bmatrix}_{\text{FP16}}$$

- Regular values
- Outliers

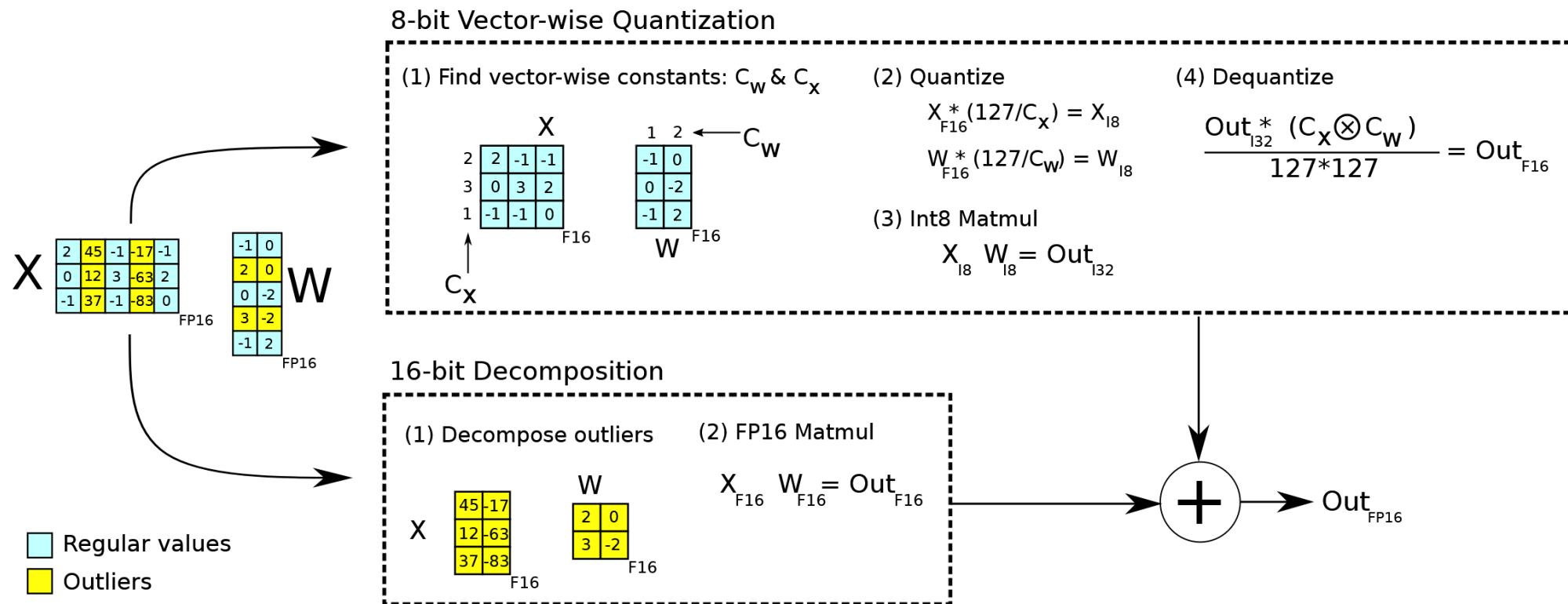
INT8 QUANTIZATION



INT8 QUANTIZATION



INT8 QUANTIZATION



INT8 QUANTIZATION

- The conversion to and from fp16/int8 requires additional overhead computation.
 - Models smaller than 6.7B parameters are slower due to this overhead.
- But this quantization approach enables running inference with 175B parameter models on 80GB of VRAM.
 - (there are single GPUs with this much memory)
 - Or you can use 8 consumer GPUs (GeForce RTX 3090).
 - Inference speed is doubled in comparison to fp16 inference.

MORE QUANTIZATION

- More recent quantization methods are able to further reduce the precision to int4, int3, and int2 (!).
- For example, **SpQR** (Sparse-Quantized Representation; Dettmers et al., 2023), not only considers outliers in the weight/activation matrices.
 - They more directly consider the quantization error on real inputs.
 - For each weight matrix W in the model,
 - They use a small set of calibration inputs X to measure a **sensitivity parameter** for each weight w_{ij} in W :

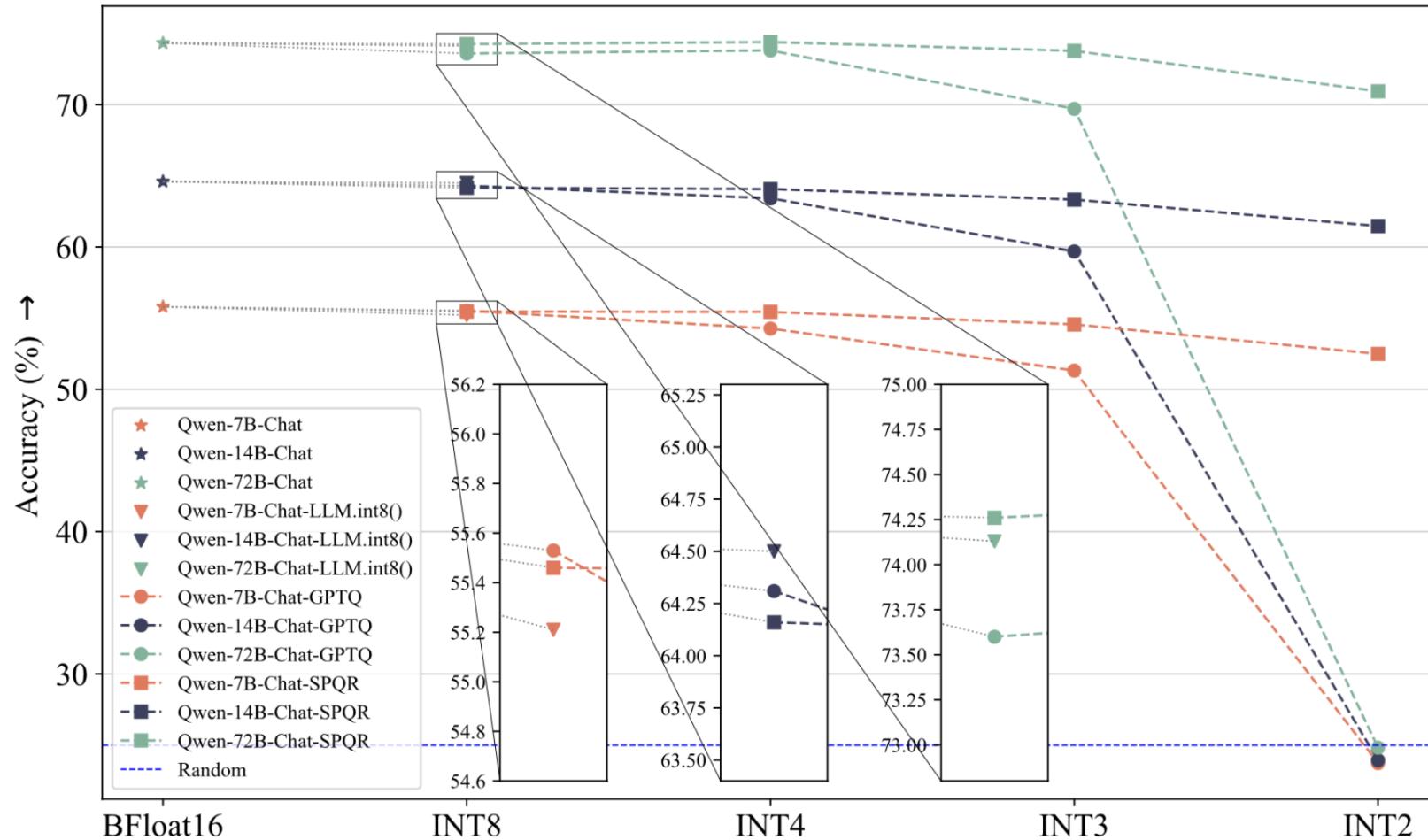
$$s_{ij} = \min_{W'} \left\| W'X - W'x \right\|_2^2$$

such that $w'_{ij} = \text{quantize}(w_{ij})$ and the other parameters of W' are unconstrained.

MORE QUANTIZATION

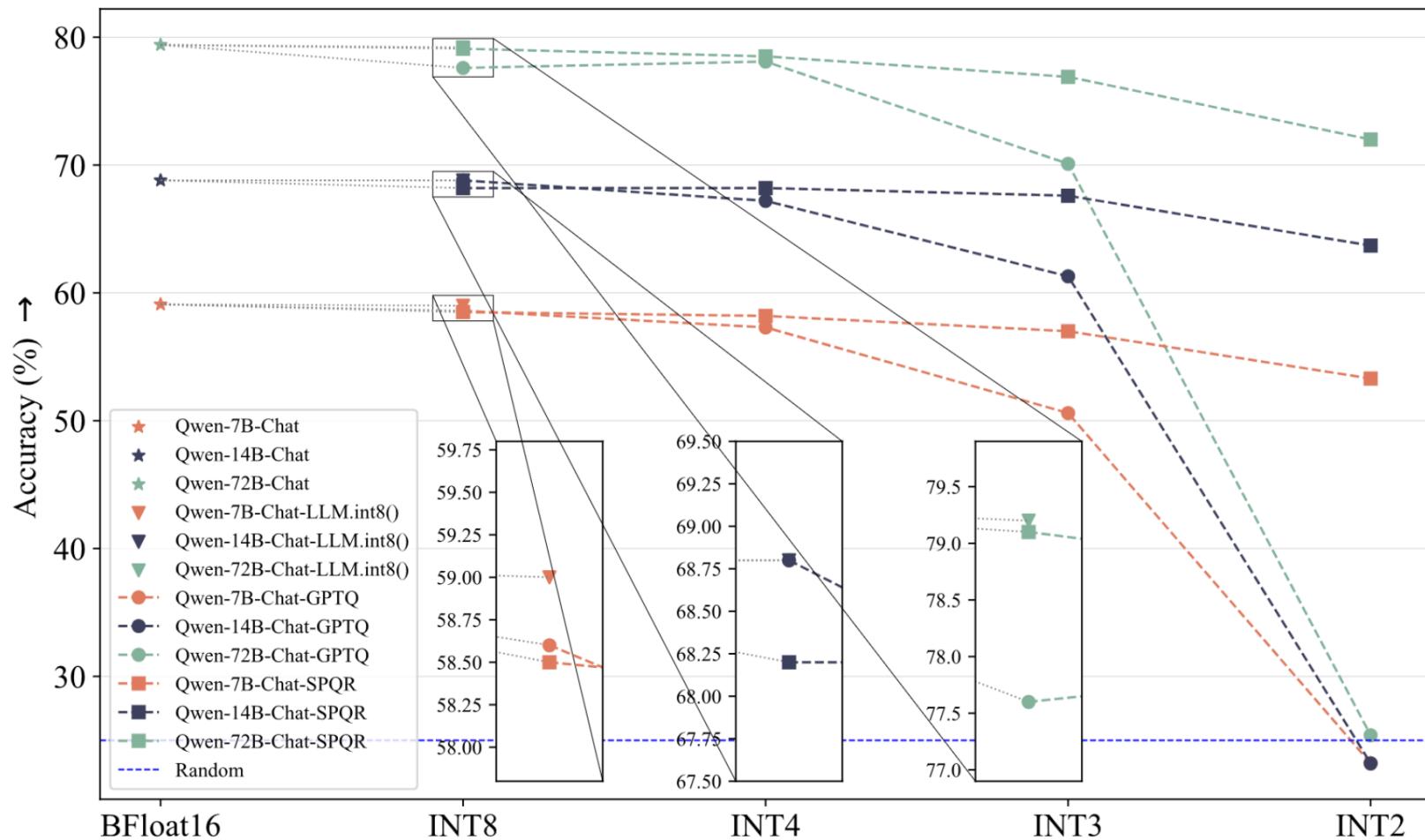
- They then specially consider weights in the matrix that are very sensitive to quantization (i.e., they have very high s_{ij}).
- They use higher precision to represent those weights, and lower precision for all other weights.
- With this approach, they are able to quantize models into int3 and int2 (binary).
- Jin et al., 2024, evaluated SpQR along with other quantization methods on a number of benchmarks.
 - **MMLU** (Massive Multitask Language Understanding; Hendrycks et al., 2021): Multiple-choice questions from broad set of categories.
 - **C-EVAL** (Huang et al., 2023): Multiple-choice examples from Chinese standardized exams.

MORE QUANTIZATION



(a) MMLU

MORE QUANTIZATION



(b) C-EVAL

TWO BROAD APPROACHES TO QUANTIZATION

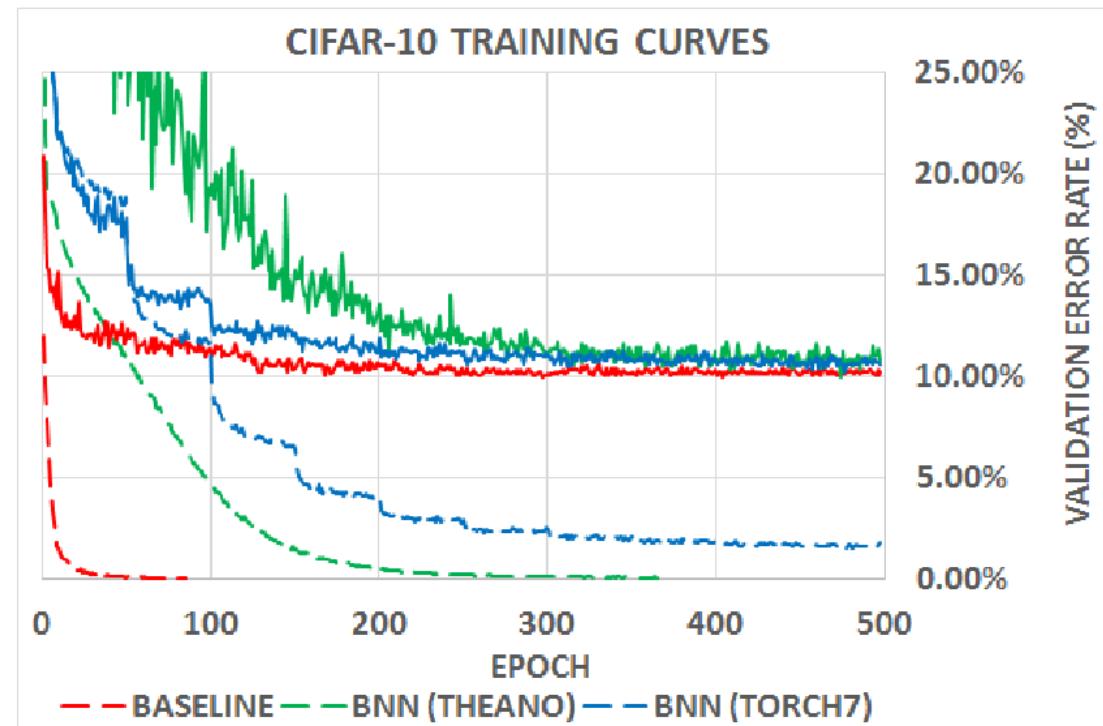
- The methods described thusfar involve training a model with high precision (or mixed precision) and then quantizing the model for inference afterwards.
- These approaches (including GPTQ and SpQR) are classified as **post-training quantization** (PTQ) methods.
 - Generally, while quantized models are evaluated on a handful of benchmarks,
 - Their abilities and generalization behavior, relative to the unquantized model, are currently not well understood.
- What if we modified the training procedure to make the model more robust to quantization?
- This other general approach is called **quantization-aware training** (QAT).

BINARIZED NEURAL NETWORKS

- One early approach to QAT is called **binarized neural networks** (Courbariaux et al., 2016).
 - All activations and weights are +1 or -1.
 - Backprop is also discretized.
 - They wrote a GPU kernel (“XNOR kernel”) to optimize binary matrix multiplication.
- They tested their method by training a convolutional neural network on the CIFAR-10 dataset.

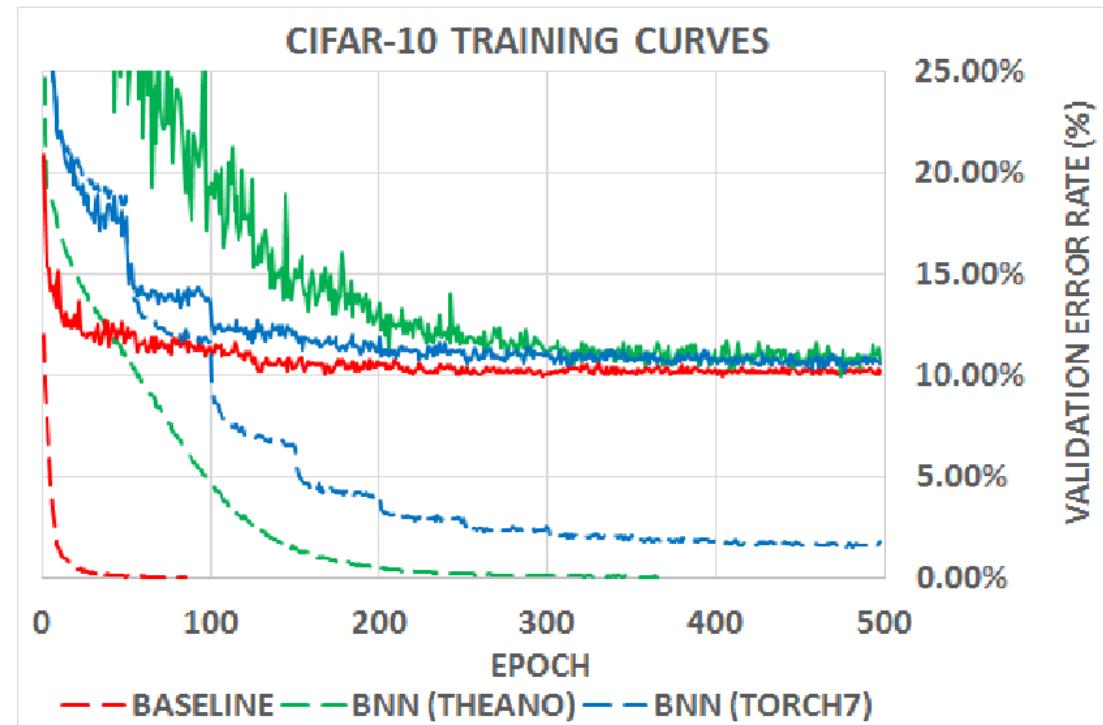
BINARIZED NEURAL NETWORKS

- The dashed lines show the training loss.
- The solid lines show the test error rate.



BINARIZED NEURAL NETWORKS

- Training is considerably slower with binarized neural networks,
- But the final accuracy is not significantly lower than the baseline.

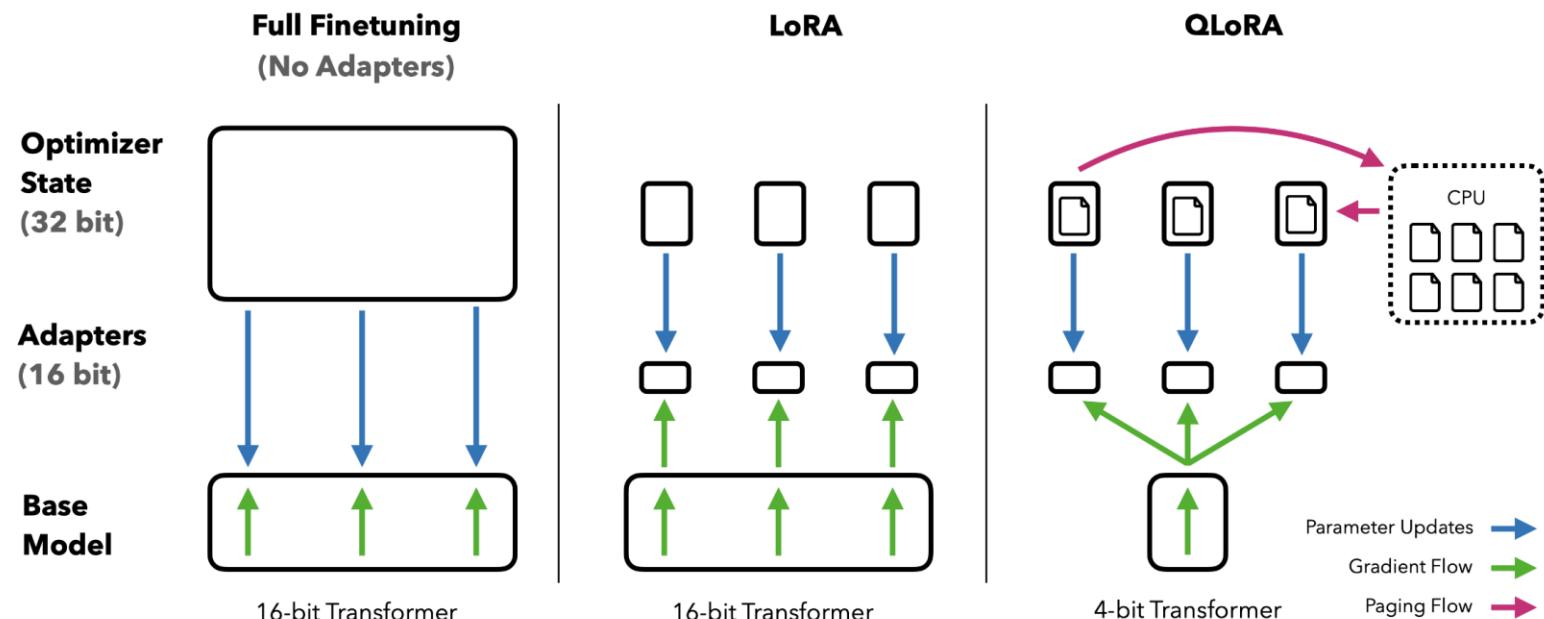


QUANTIZATION-AWARE TRAINING

- Liu and Oğuz (2023) propose an approach to first pretrain an unquantized model.
 - Next, initialize a quantized model from the first model's weights.
 - Generate many input examples and perform forward passes on the unquantized models to obtain the logits for each example.
 - Fine-tune the quantized model to minimize the difference between its predicted logits and the logits from the unquantized model.
- QAT methods generally tend to be more computationally intensive.
 - Thus, PTQ methods are more widely used today.
 - But research is ongoing.

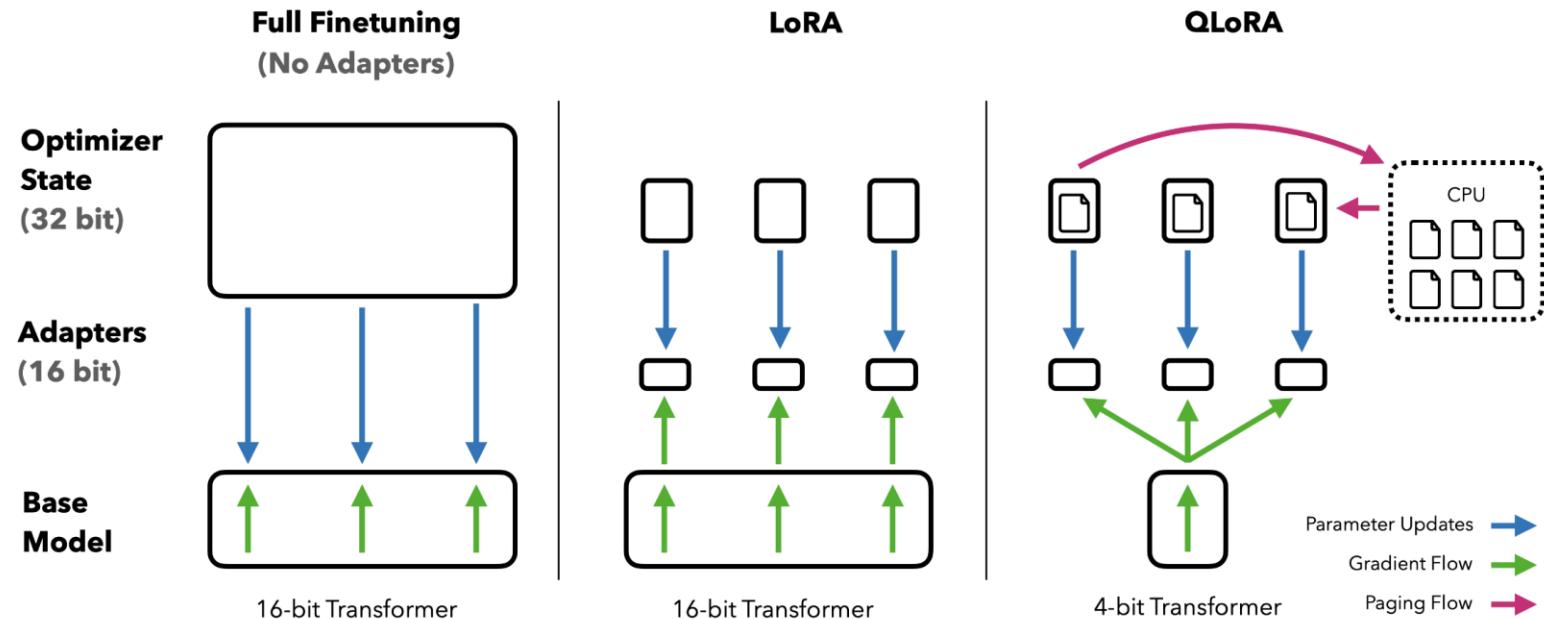
QLORA

- Quantization can be combined with parameter-efficient fine-tuning methods such as LORA.
- In **QLoRA** (Dettmers et al., 2023), the model parameters are quantized to 4 bits.



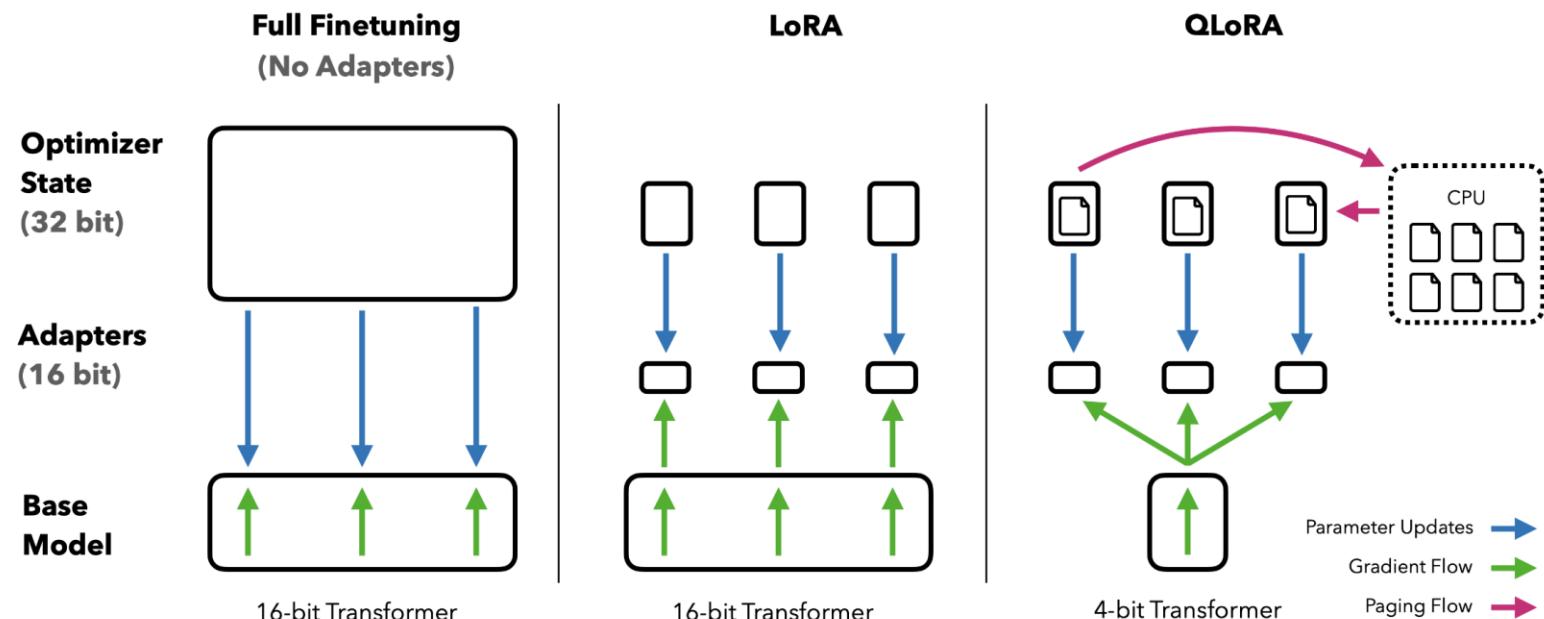
QLORA

- They propose a new number format called NormalFloat which is specifically designed to store normally-distributed values.
- The adapters are stored using bf16.



QLORA

- They utilize “GPU memory paging” to move memory from GPU memory to system memory and back to more gracefully handle spikes in GPU memory usage.
- Enables fine-tuning a 65B parameter model on a single 48GB GPU.



QUANTIZATION SUMMARY

- We have discussed how to use quantization to speed up both inference and training of large models,
 - And to greatly reduce their memory footprints.
- For inference, we have looked at both **post-training quantization** (PTQ) and **quantization-aware training** (QAT) approaches.
- Next time, we will continue looking into other model compression techniques.
 - Distillation
 - Can we use a large model to teach a smaller model?
 - Is there an upper limit to the performance of the smaller model?
 - Pruning
 - Can we remove parts of the model and maintain accuracy?

QUESTIONS?